

D1.7
Vulnerability discovery methodology

Project number: 731453

Project acronym: VESSEDIA

Project title:
Verification engineering of safety and security

critical dynamic industrial applications

Start date of the project: 1st January, 2017

Duration: 36 months

Programme: H2020-DS-2016-2017

Deliverable type: Report

Deliverable reference number: DS-01-731453 / D1.7 / 1.0

Work package contributing to the

deliverable:
WP 1

Due date: Dec 2018 - M24

Actual submission date: 22nd January, 2019

Responsible organisation: AMO

Editor: Cédric BERTHION

Dissemination level: PU

Revision: 1.0

The project VESSEDIA has received funding from the European Unionôs Horizon 2020
research and innovation programme under grant agreement No 731453.

Abstract:

This document is a methodology to detail how to use

Frama-C to perform a security audit of C source code.

It is focus on specific constraints faced by security

evaluators: time constraint and lacks of previous

knowledge of the audited source code.

Keywords:
Security evaluation, C Source code, Code auditing,

Frama-C

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page I

Editor

Nicolas ZILIO (AMO)

Cédric BERTHION (AMO)

Disclaimer

The information in this document is provided ñas isò, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view ï the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability. This document has gone through the consortiums internal review
process and is still subject to the review of the European Commission. Updates to the content may be made
at a later stage.

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page II

Executive Summary

This document first presents a comprehensive review on C source code auditing as experienced
by security auditors, facing specific constraints: time constraint and lacks of previous knowledge
of the audited source code. Then, a methodology detailing how to use Frama-C to perform a
security audit of C source code, given the previous constraints, is presented.

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page III

Contents

Chapter 1 Introduction ... 1

1.1 VESSEDIA motivation and background ... 1

1.2 Role of the deliverable ... 1

1.3 Structure of the document .. 1

1.4 Related deliverables ... 2

Chapter 2 Security evaluation by source code auditing 3

2.1 Code analysis in security evaluation .. 3

2.1.1 What is it and how it differs from code review in development? 3

2.1.2 It should be all about context .. 4

2.1.3 On using automation tools for security review ... 5

2.1.4 On the conduct of a source code security evaluation .. 5

2.1.5 On the methodology used ... 6

2.2 A general methodology for code analysis .. 7

2.2.1 Requirements for the reviewer .. 7

2.2.2 Methodology overview .. 7

2.2.3 Methodology phases .. 7

2.2.4 Quick Summary .. 17

Chapter 3 Most Common Vulnerabilities in C .. 18

3.1 Technical background .. 18

3.2 C language intrinsic vulnerabilities ... 23

3.2.1 Buffer Overflow ... 23

3.2.2 Null pointer dereference ... 28

3.2.3 Uninitialized variable utilization ... 30

3.2.4 Double free ... 31

3.2.5 Use-after-free ... 35

3.2.6 Integer Overflow ... 36

3.2.7 Off-by-one .. 37

3.2.8 Format String .. 38

3.2.9 Type confusion ... 40

3.3 Cryptographic vulnerabilities .. 42

3.3.1 Non-respect to cryptographic standards ... 42

3.3.2 Misuse of cryptographic algorithms... 42

3.4 C vulnerabilities depending on the environment .. 42

3.4.1 Race condition .. 42

3.4.2 Path manipulation ... 44

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page IV

3.4.3 SQL Injection .. 45

3.4.4 Command Injection ... 46

3.4.5 Logic bugs .. 48

3.4.6 Contextual vulnerabilities .. 49

Chapter 4 On using Frama-C within the proposed methodology 51

4.1 What is Frama-C? .. 51

4.1.1 Description ... 51

4.1.2 Frama-Côs intended use ... 52

4.1.3 A brief discussion on using Frama-C for security code review 52

4.2 Integration of the modified Frama-C into the proposed methodology................. 53

4.2.1 Using Frama-C on the automated review part .. 53

4.2.2 Using Frama-C on the manual review part of the analysis phase 60

Chapter 5 Applying Frama-Côs use on an example .. 62

5.1 Choosing a sample .. 62

5.2 Quick discovery phase ... 62

5.3 Review phase... 63

5.3.1 Automated review ... 63

5.3.2 Manual review phase .. 67

Chapter 6 Summary and Conclusion .. 69

Chapter 7 List of Abbreviations ... 70

Chapter 8 Bibliography .. 71

Chapter 9 Annex ... 72

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page V

List of Figures

Figure 1: proposed methodology flow .. 7

Figure 2: discovery phase sub-phases ... 8

Figure 3: review sub-phases .. 10

Figure 4: vulnerability analysis sub-phases .. 13

Figure 5: closure phase.. 15

Figure 6 : source code methodology summary ... 17

Figure 7: memory layout of a program ... 19

Figure 8: stack evolution in the previous program .. 20

Figure 9: heap layout ... 21

Figure 10: free of a chunk .. 21

Figure 11: reallocating a chunk .. 22

Figure 12: physical address layout ... 22

Figure 13: a pointer in memory .. 23

Figure 14: stack layout after variables declaration.. 24

Figure 15: stack manipulation when writing data in the buffer .. 25

Figure 16: pass variable overwrite ... 25

Figure 17: privilege escalation without the correct password .. 26

Figure 18 : heap overflow exploitation from the previous program ... 27

Figure 19: control flow hijack due to BSS overflow ... 28

Figure 20: bss overflow to control flow hijack ... 28

Figure 21: segmentation fault due to null pointer dereference .. 30

Figure 22: uninitialized variable utilisation .. 31

Figure 23: double free vulnerability leveraged into an identity theft .. 34

Figure 24: use-after-tree vulnerability leveraged into identity theft .. 35

Figure 25: execution of the off-by-one program .. 38

Figure 26: stack layout when calling printf .. 38

Figure 27: internal working of printf ... 39

Figure 28: format string vulnerability used to read secret file .. 40

Figure 29: format string vulnerability used to parse the stack ... 40

Figure 30: example of type confusion ... 41

Figure 31: race condition illustration ... 44

Figure 32: path manipulation example ... 45

Figure 33: elevating its privileges through command injection .. 48

Figure 34: logic bug leading to wrong privileges given to the user .. 49

Figure 35 : accessing red alarms tab within the GUI of Frama-c .. 57

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page VI

Figure 36 : using Impact plugin in the graphical interface of Frama-C (green statements are the
one highlighted by Impact plugin) ... 60

Figure 37 : using Zones to highlight statements (in pink) that define the value of huhu variable in
the printf function .. 60

List of Tables

Table 1: CVE count in 2017 (source: http://cppcheck.sourceforge.net/) 4

Table 2: examples of commonly used security scanners .. 11

Table 3: list of potentially vulnerable libc functions ... 12

Table 4: matrix giving risk score ... 14

Table 5: impact score determination .. 14

Table 6: exploitability score determination.. 14

Table 7 : example of a vulnerability presentation that could be found in the report 15

VESSEDIA D1.7 Page 1 of 104

Chapter 1 Introduction

1.1 VESSEDIA motivation and background

The VESSEDIA project aims to bring safety and security to the next generation of software
applications and Internet connected devices. In our rapidly changing world, the Internet has been
the source of many benefits for individuals and companies alike, transforming entire industries.
With this new technology, capable of connecting billions of devices and people together, new
threats have also appeared ï threats VESSEDIA will help software developers address in order
to create connected applications that are safe and secure. VESSEDIA proposes to enhance and
scale up modern software analysis tools, in particular the mostly used open-source Frama-C
analysis platform, to make them useful and accessible to a wider audience of developers of
connected applications. At the forefront of connected applications is the Internet of Things (or IoT
for short), which has undergone explosive growth and where security risks have become all too
real. VESSEDIA will focus on this domain to demonstrate the benefits our tools bring to the table
when developing connected applications. VESSEDIA will tackle this challenge by 1) developing
a methodology that makes it possible to adopt and use source code analysis tools as efficiently
and with similar benefits as it is already possible in the case of highly-critical applications, 2)
enhancing the Frama-C toolbox to enable efficient and fast implementation, 3) demonstrating the
capabilities of the new toolbox on typical IoT applications, including an IoT Operating System
(Contiki), 4) developing a standardisation plan for generalising the use of the toolbox, 5)
contributing to the Common Criteria certification process, and 6) defining a ñVerified in Europeò
label for validating software products with European technologies such as Frama-C.

1.2 Role of the deliverable

This document reviews the process of source code auditing in security evaluation, then describes
how security evaluators should use and interact with the VESSEDIA tools and plug-ins to discover
common C vulnerabilities, as declared in the work of Task 1.6 inside WP1. An example of using
such a methodology is finally presented.

1.3 Structure of the document

The document can be divided into 5 major parts:

Chapter 2 describes the structure of a source code audit, common methodologies used, and the
constraints applied to such an audit. This chapter should be considered apart from the D4.2
reportôs methodology, which focuses on a generic evaluation methodology. Indeed, it is
considered in the latter that the final product is available and can be tested against real attacks.
Common steps like risks analysis are also different due to the fact global information available to
the reviewer is not the same in those two cases. However, in the case the final product is also
available; this report methodology should be considered like a sub step of the generic
methodology presented in D4.2.

Common C vulnerabilities and their implication are presented within Chapter 3.

In Chapter 4 we specify the security evaluation methodology to be applied with Frama-C to
discover vulnerabilities.

Such a methodology on a known vulnerable app is then applied and compared to a classical
approach within Chapter 5.

A Conclusion on limits and adequacy of the methodologies is done in Chapter 6.

VESSEDIA D1.7 Page 2 of 104

1.4 Related deliverables

D1.1 ï Security requirements for connected medium security-critical applications

D1.5-a ï Vulnerabilities taxonomy

D1.5-b ï Analyses choice methodology report

D4.2 ï VESSEDIA Approach for security evaluation

VESSEDIA D1.7 Page 3 of 104

Chapter 2 Security evaluation by source code auditing

This paragraph introduces the concept of security source code auditing. The idea is to highlight
the process, its limitations and also the constraints that a reviewer might encounter during an
audit. It will especially serve as an introduction point for the next chapter.

2.1 Code analysis in security evaluation

2.1.1 What is it and how it differs from code review in development?

Source code auditing is a mean by which a security auditor examines and analyses program
source code for potential vulnerabilities or flaws. Its main objectives are to find potential security
problems or exploitable vulnerabilities in the program, then quantify them given possible
scenarios and propose solutions to it. Often, the source code audit is a complementary approach
to other audits such as penetration tests and permits often to reveal security flaws that does not
appear directly while doing other types of audits. Indeed, the auditor is normally here in the
possession of the real backbone of the program, that should let him dive deep into his functioning.
However, source code auditing does not provide a view on possible security architecture around
or another security flaws mitigations tools shipped with the end program. Furthermore, some
security missions only ask for a review based on the output from the analysis tools.

Source code analysis in security evaluation is far different than source code analysis in code
development/review. Indeed, the latter focuses on checking coding standards (does everyone
use the same programming style? Are there multiple operations on the same line?), quality of
code, reducing its complexity, improving its performance and finally ensuring the absence of
functional problems. The final goal is so to produce a ñbetter codeò than the previous one.

Regarding the time those reviews should be held, a development code review should occur
regularly at every step of the software development life cycle. This will indeed insure that a ñbetterò
code is produced at the end. On the contrary, security review often occurs at a later point in the
development process. Indeed, the code should normally ñworkò before the review is done, and
the whole context completely defined (more on that is given later). Its conduct is so often done
when a new big step of the SDLC is to be finished; like validation, pre-production and production
steps. Especially, in the case those two types of reviews are both to be held by one editor,
development reviews are done at a Capability Maturity Model1 (CMM) level of 2 (development
process can be repeatable) or 3 (development process is defined), while security reviews often
occur when the CMM level reaches 4 (development process is managed) or 5 (development
process is managed and optimized).

The reader may ask himself about the following: ñ- But, by ensuring a better quality of the code,
and so the reduction of the bug number while doing development review, security source code
analysis appears useless. What is the reason to do them so?ò. Letôs consider the following
scenario: the code to be analyzed is a highly critical client/server application, and so it has been
proven that the client always sends packets of a given size to the server. As such, in order to
improve performance, no checks are implemented on the server side regarding the size of
packets. More, those packets are stored in a temporary buffer before their processing by the
server. Thus, the server just reads the already defined size of packets from this buffer to treat
them. There is so no bug on the application and while packets are sent by the client, the server
functioning is in nominal mode. However, communications are not authenticated. Letôs now
consider an attacker that mimics the client, and starts sending packets of arbitrary sizes. When
the server will treat the packets from the temporary buffer, the parsing may result in a bad

1 ñManaging the Software Processò, Watts Humphrey

VESSEDIA D1.7 Page 4 of 104

interpretation of fields that may lead to a crash of the server, which is critical. There is here a
security problem, which is the possibility of ñDeny of serviceò, or even ñarbitrary code executionò,
by an attacker. A solution is to ensure a check on the packet size on reception of data on the
server side.

Finally, the aim of a security audit is to verify that an application cannot be used in any way by a
malicious user, while the development review ensures that the application can be used in the
intended way.

2.1.2 It should be all about context

As denoted by the previous example, the context of the application was important to understand
a potential security flaw on the application. Especially, in the case where it is not possible for an
attacker to mimic a client, then the risk associated with this deny of service would be much lower.

Thus, security code review should not be simply about reviewing pure code (i.e. finding so called
ñbugsò), and its efficiency is tied to a global context understanding. Indeed, the idea behind
security code review is to ensure that the code adequately protects its assets, and protects itself
against malicious entries from its environment.

Understanding the whole context permits therefore:

¶ To establish the risks incurred by the application. Especially, some security failures
may occur even without any functional problem in the analyzed program. One
example would be an improper authentication system.

¶ To conduct a faster/better analysis as the priority of the audit will be to analyze paths
that are potentially vulnerable to a malicious entry or that are susceptible to cause
the biggest risks to the entity using the application.

¶ To emit better recommendations, as those could fit the context in which they are
emitted for.

To sum up, security review is about finding bugs that are intrinsic to the code (and that may lead
to a hijack of the normal control flow of the program), but also about finding bugs that are context
dependent.

As a potential proof of this statement, here is a summary (certainly not completely accurate) of
the most common types of security vulnerabilities relevant to C that were declared in 2017 (from
CVE count):

Category Amount

Buffer Errors 2530

Improper Access Control 1366

Information Leak 1426

Permissions, Privileges and Access
Control problems

1196

Input validation 968

Table 1: CVE count in 2017 (source: http://cppcheck.sourceforge.net/)

Considering that ñbuffer errorsò, ñinput validationò and ñinformation leakò are vulnerabilities that
are dependent on a pure bug from the code that means here that only 65% of vulnerabilities are
resulting from the code itself. Of course, this result is subject to variations (Information leak could
be the result of a functional problem instead for example) and should not be taken too seriously.

http://cppcheck.sourceforge.net/

VESSEDIA D1.7 Page 5 of 104

2.1.3 On using automation tools for security review

As the context of the application is really important to conduct a correct security review of one
code, one has to understand that running a tool on a code is not sufficient. Indeed, tools are not
able to automatically understand the context and the possible risks that may arise from the context
of the application (at least, those should be modeled in the tool by a human).

However, the search for intrinsic bugs can be made much more efficient by tools than by humans.
Manual code reviews are indeed slow, covering 100-200 lines per hour on average. Also, there
are multiple security flaws to look for in code, a lot of data flow to keep in mind and humans can
only keep a small number of them in memory between the point where vulnerability is declared
and the point where this vulnerability can have an impact. Furthermore, a manual code review
requires a profound understanding of the language by the reviewer. It is thus a difficult task prone
to lots of errors. Source code analysis tools can search a program for hundreds of different
security flaws at once, at a rate far greater than any human code review. Those tools provide so
a quick method, that may overall give already good results. It is also a way to give more constant
results across different analyses. Indeed, tools are not subject to tiredness or stress for example,
neither to the intrinsic knowledge of a human reviewer. However, these tools don't eliminate the
need for a human reviewer, as they produce both false positive and false negative results, and
their results still need to be triaged.

Finally, those two manners of leading an analysis are complementary, as automatic review really
helps at getting a first glance on a code for an auditor.

2.1.4 On the conduct of a source code security evaluation

There is no general guidance on how a security source code evaluation should be performed
(please see next paragraph for an explanation). As such, the security auditor is heavily dependent
on several factors for the run of its audit:

- What is aimed at during the security audit. For example, in certain companies, it is asked that
the code is security reviewed before going into production, without however strict criteria. In such
cases, an automatic security review is often asked. The idea is so to use an automatic tool to
detect potential security problems, and the role of the auditor is just to interpret the results of the
tool, avoid false positives, and create the associated report. In other scenarios, a deep source
code audit is required, for example to make sure that an application is secure before using it into
highly critical environments (e.g. military, governments, financeé). In this case, the idea is to
understand deeply the context associated with the application, and to be able to emit attack
scenarios and risks about already found vulnerabilities.

- What is provided for the security audit. Again, it can be really motley. Sometimes, not even a
complete source code is given to the security auditor, and this source code could have been
obfuscated before the audit (due to the fear of intellectual property theft). In the best scenarios,
the auditor is given the whole functional and specifications documentation, a complete code, a
functioning application as well as some assistance from a developer.

- What time is given to the auditor. As a reference, one can take the number of lines of code (LoC)
to be treated during the time given for the audit. For example, in the evaluation of KeePass done
by the European commission, there were a total of 145000 LoC, for 23 days of evaluation done
by 6 auditors at the same time2. This means that the evaluation was done at a rate of
approximately 150 LoC per hour. In the meantime, some missions concern around 20000LoC for
5 days of work of an auditor, so around 600 lines of code to be reviewed by the auditor per hour3.

2 ñKeePass Password Safe, code review results reportò,
https://joinup.ec.europa.eu/sites/default/files/inline-files/DLV%20WP6%20-01-
%20KeePass%20Code%20Review%20Results%20Report_published.pdf
3 Internal mission realized by Amossys

VESSEDIA D1.7 Page 6 of 104

In practice, what drives the evaluation is the price the client or the editor wants to pay. Given a
price of around 600-1000$ a day for an evaluator in Paris, source code review is in general
expensive to realize. As such, it is often to see heavy time constraints for huge code base, or
poorly documented one, posed to a security auditor in general. The use of a security source code
analysis tool is so often required, and this tool should provide a quick way to determine
vulnerabilities.

2.1.5 On the methodology used

Often security companies argue they are using well-known baselines for security code such as:

¶ ITIL Version 3 Service Lifecycle for Application Support4

¶ ISO/IEC 270345

¶ NIST SP 800-37/646

All those baselines are actually aimed towards the editor. The first one basically presents how an
editor should prepare a security code review, and as such give some insights of the job to be
done by the reviewer. Indeed, it is for example described that an introductory meeting should be
held, where the reviewer is able to understand the application context, and for that, some
resources should be present. As such, we know that the reviewer should conduct an introductory
meeting, if possible. Also, examples of what vulnerabilities to search for are presented for web
based applications but not for C directly. All the other baselines are in fact a security management
plan for the whole lifecycle of a product. In ISO, there is however a security review process. This
process consists in checking that every measure taken to reduce the risks that may be exploited
against the application is correctly implemented. In none of those baselines there is an in-depth
process to realize a security code review, from the view point of the reviewer.

Given those baselines are not aimed towards the reviewer, the whole code review methodology
is in fact a generic consensus made from practical experiences or reviewers. Based on the
OWASP Code review project7, which defines a generic flow of the work to be done for a complete
audit, two main methods of manual source code auditing have been defined. The first one is a
top-down approach, which consists to start from an entry point of the program and either follow
all code branches from that entry point and stop when a branch with no interest is detected. The
second approach is a bottom-up approach: the auditor first establishes a list of interesting
functions to audit in term of security (i.e. functions using calls to known dangerous API) or points
in the code known to be influenced by an attacker, determines if a security problem could arise
and then identify from those functions the code serving as entry point to determine if an attacker
could indeed manipulate the vulnerable function. There are pros and cons for both methods. The
first one is time consuming but covers most of the source code and provides a great
understanding of how the application works. The later one is time saving and focuses on areas
which are the most vulnerable, but does not follow all code branches and skips some kind of
vulnerabilities like logical issues. Also, the latter can only be realized correctly if the
documentation provided by the editor is detailed enough to be able to determine the dangerous
areas of the code.

The choice of the right method is in practice completely influenced by the time given to the auditor
and the size of the code to audit. The idea is indeed to provide the best possible analysis in a
limited amount of time.

4 https://www.fichier-pdf.fr/2011/06/16/itil-v3-application-support/
5 https://www.iso.org/en/standard/44378.html
6 https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final
7 https://www.owasp.org/index.php/OWASP_Code_Review_Guide_Table_of_Contents

VESSEDIA D1.7 Page 7 of 104

Given the results of the previous paragraph, one has to understand that there is no generic
method for a security auditor to do a code review. Especially, in the case of high constraints given
to the auditor, the security audit will often be limited to a ñdownò approach that is simply check for
known dangerous functions used and/or use an automatic tool to find potential vulnerabilities and
treat the results. In this case, the auditor wonôt try to understand the context around the application
and wonôt check the security implications of the entry points given by the application.

However, in case of correct constraints given to the auditor, it is better to mix the two methods:
that is, to start with the top-down approach, but while checking the entry point for attacker impact,
browse with a limited depth the branches from the entry point. The idea is so to gain fast
knowledge of the application internal while assessing the dangerous areas of the code, in order
to gain some context.

2.2 A general methodology for code analysis

This paragraph will present a generic methodology to make a security source code analysis from
a reviewer view point. First, an overview will be presented, and then each point of the
methodology will be explained more in-depth. With this presentation, Frama-C integration into it
will be explained in further chapters.

2.2.1 Requirements for the reviewer

The reviewer should have the following qualities in order to perform a good security code review:

¶ The first and the most important one is the fact that the reviewer should be proficient in
the language of the application audited, in order to make sure vulnerabilities wonôt be
omitted due to incomprehension. In the case the application uses libraries or frameworks,
the reviewer should also ideally know the internals of those.

¶ The second one is the ability to model a system given the documentation and/or the code,
and being able to represent by itself the interactions of this system.

¶ Finally, ideally the reviewer has a good communication skill, which will be important in
case where developers need to be contacted.

2.2.2 Methodology overview

The proposed methodology is composed of 4 big steps that should take place consecutively.
Below is a diagram presenting it:

Figure 1: proposed methodology flow

In the first phase, the reviewer obtains the knowledge needed to conduct the rest of the analysis.
Basically, the aim is to be able to define the context, and understand what the application should
normally do.
The second phase is the code review phase. It is where vulnerabilities are found within the code.
The third phase, being optional depending on what required, consists in being able to quantify the
found vulnerabilities, and to propose countermeasures for the vulnerabilities found.
Finally, the results from the whole analysis are presented in the closure phase.

2.2.3 Methodology phases

VESSEDIA D1.7 Page 8 of 104

2.2.3.1 Discovery phase

The discovery phase aims at providing a full insight of the application for the reviewer. The idea
is indeed to make sure that the whole context of the application is well understood, in order to
provide a better analysis at the end.

This phase can be divided into 3 to 4 sub phases which can be depicted by the following diagram:

Figure 2: discovery phase sub-phases

The first one is the phase where the reviewer becomes acquainted with the task at hand. He
basically realizes a check-up of the information available, as well as the objectives of the task.
The next phase is a functional review of the application, in order to understand what the
application should do and what its purpose is. The aim of this phase is to determine the assets
that should be protected by the application. The third one is a contextual review, in order to
understand the environmental context of the application. From that, the reviewer should be able
to deduce the risks that the application is exposed to. Finally, a report phase should be done. The
idea is to make sure the same view is shared between the editor and the reviewer, as well as
having some time to tidy up his own reasoning.

2.2.3.1.1 Functional review

The functional review of the application should let the reviewer know what are the ñbig functionsò
of the code, i.e. what are the intended objectives of the code, and its I/O. Basically, it will let him
know the potential entry points that could be leveraged by an attacker.

To do so, the review team should be provided with the following documents:

¶ Application design document: this document presents what are the requirements before
the code was written, and how those are answered. Generally, a design of the components
of the code, as well as their interactions, is defined in this document.

¶ Functional specifications: this document presents all the wanted functionalities of the
program.

¶ Optionally, the documentation about test cases. Those will indeed provide examples of
the running code to the reviewer.

Every document should finally be read and understood.

2.2.3.1.2 Contextual review

The contextual review aims at providing the reviewer with the environment of the code and its
application. The idea is to let the reviewer know the most critical parts of the code, and to know
the parts of the code to investigate first. In a second time, this contextual review will permit to
indicate a level of impact for the vulnerabilities found.

To realize this review, the reviewer should be provided with the following documents:

¶ Architecture documents: documents describing an in-depth system overview, its different
sub-components, their implementation and how they interact. It is basically a design file
much more technical.

¶ Integration documents: documents describing how the final application is integrated into
a workflow, what are the other components interacting with it or that can manipulate the

VESSEDIA D1.7 Page 9 of 104

flows of the reviewed application. For example, a web application can be protected
upstream by a web application firewall that raises attackerôs level.

¶ Business requirements: this document presents rapidly what are the business objectives
of the application.

¶ Risk analysis: in well-defined SDLC, a risk analysis might be already done. This analysis
so provides a full insight of the threat scenarios feared from the editorôs point of view, and
the potential impact in case of a realization.

Every document should be fully read and understood.

2.2.3.1.3 On mixing those two reviews

There is no obligation the two previous reviews shall be done apart from each other. The
methodology described here made indeed the difference as the objectives of those two reviews
are not the same. If there are documents to be received, in general, all attached documentation
of a code project is sent to the reviewer. More, some reviewers prefer to take the two approaches
together. It is simply a question of feeling.

2.2.3.1.4 The first report phase

During the first report phase, the reviewer should be able to write down the following:

¶ A description of the sensitive assets that the code should protect (it can be itself) and the
impact associated with their compromise. An example of such assets is presented within
the report D1.1 of VESSEDIA project.

¶ A description of the threats against the application. For this step, a threat modeling
methodology is presented within the D1.1 or D4.2 report of VESSEDIA project.

¶ A description of the functional security components of the application

Given the previous points, the reviewer might be able to produce a ñsecurity mapò of the
application that is every threat scenario and the associated countermeasures. As such, he can
normally determine how to investigate the code in the next phase.

Afterwards, it could be shared and discussed with the editor. One of important aspect here is to
agree on the prioritization of the things that will get reviewed, as well as explaining the reviewer
expert point of view concerning security.

2.2.3.1.5 A practical approach

Most of the time, there is no such documentation, as described in the paragraph 2.2.3.1.2,
attached with a code project. Or, in most cases, the documentation is outdated regarding the
current state of the project. Therefore, one of the most effective ways to get started, and arguably
the most accurate, is to talk with the developers and the lead architect of the application. This
should not take too much time, but just enough for the development team to share some basic
information about the key security considerations and controls. At least, the reviewer should be
able to determine the following points:

¶ Aims and functionalities of the project

¶ Assets that should be protected by the application

¶ Possible important business impacts

¶ Possible important technical impacts

¶ Definition of the attack surface

¶ Required security controls (implemented, regular or policies ones)

Given the answers, the reviewer should so at least be able to determine the importance of the
application for the enterprise and the associated biggest risks; establish the boundaries of the
application and establish potential threats and controls.

VESSEDIA D1.7 Page 10 of 104

In order to do, the reviewer can use simple questions like the following:

òWhat type/how sensitive is the data/asset contained in the application?ó:

This is a keystone to security and assessing possible risk to the

application. How desirable is the information? What effect would it have on

the enterprise if the information were compromised in any way?

òIs the application internal or external facing?ó, òWho uses the application,

and are they trusted users?ó

òWhere does the application host sit? Is there for example a DMZ?ó

òIf there are internal and external users, what are the differences from a

security standpoint? How do we identify one from another? How does

authorization work?

òAre there anymore security features in your architecture?ó

òHow important is this application to the enterprise?ó

Finally, a walkthrough of the actual running application is very helpful to give the reviewer a good
idea about how the application is intended to work. Also, a brief overview of the structure of the
code base and any libraries used can help the review to get started.

2.2.3.2 Review phase

The review phase consists in actually analyzing the source code for flaws. This is the technical
part of the methodology. The review phase should consist of a manual investigation and also an
automated one to detect flaws in the code. The following diagram presents the steps of the review
phase:

Figure 3: review sub-phases

2.2.3.2.1 Automated review phase

At this step of the analysis, the reviewer should know the global context of the application, and
may be able to determine the structure of the source code. He still hasnôt analyzed the code. In
order to get a first insight into the code and its actual security, as well as eliminating the possible
intrinsic vulnerabilities that may be found in the code, a security source code analyzer can be run.
Indeed, as explained in the paragraph 2.1.3, as tools will be more efficient for such a task, as
finding intrinsic vulnerabilities do not require a context comprehension and are faster and more
precise. This phase is so to get the tool up and running on our code base. It can sometimes need
some tweaks to do so.

The source code analyzer has to be run on the application without any knowledge of it. It is what
is called in the security field a ñscannerò. The analyzer indeed scans the code in order to find

VESSEDIA D1.7 Page 11 of 104

vulnerabilities. During the automated analysis, the reviewer can start his own manual analysis
that will be described in the following paragraph.

In the case of a C/C++ code, from a practical point of view, here is a list of commonly used tools
in evaluation centers:

Tool Licensing type

Code Sonar Commercial

IBM Appscan Commercial

Checkmarx Commercial

CppCheck Free

FlawFinder Free

Table 2: examples of commonly used security scanners

The practical point of view of this step cannot be described here, as it is heavily dependent on the
tool used. For example, with Code Sonar, the methodology is the following:

1) Make sure that the code is almost complete and that a compilation chain can be realized
2) Use that compilation chain with Code Sonar (for a Makefile, the command line will look
like : ñcodesonar makeò)

3) Wait for the analysis to be finished

2.2.3.2.2 Results triaging

Once the automated analysis is done, the reviewer should gather results and process them: the
idea is to eliminate false positives and ensure true positives.

From a practical point of view, this step is often considered as a ñquick-winò step. Basically, if a
reviewer can determine easily if a result from the automated tool is a true positive, then he should
gather it and report the vulnerability afterwards. Otherwise, especially when determining if the
vulnerability is a true or false positive canôt be decided easily, the reviewer should first gather the
result as a work-in-progress. He could come back to it once its manual phase is done. Indeed, he
will have a more in-depth understanding of the code, allowing him to make an easier decision.

2.2.3.2.3 Manual Review phase

This phase and the next big step of the methodology (e.g. the vulnerability analysis phase) can
be done simultaneously. Here, as already stated in the paragraph 2.1.5, there is no predefined
method to use. We will however consider that the reviewer uses a mixed approach. The idea is
so to determine if a vulnerability may appear in the code given the paths taken from the possible
risks that have been identified in the first phase of the methodology.

The steps are the following:

¶ take one of the most impactful risks identified

¶ identify every possible areas of the code where this risk may appear

¶ check if those areas are vulnerable or not

¶ finally, check possible entry points leading to those areas and check rapidly for
vulnerabilities in the code branches taken.

VESSEDIA D1.7 Page 12 of 104

Also, in the case the reviewer did not have any tool to perform the automated review of the
previous paragraph, then he should perform a search on known possible vulnerable functions,
and determine if their usage is secure or not. In the case the reviewer is using Linux; grep might

be the tool to use there. Here is a list of known potential functions from the standard Linux Libc

that may have security implications (the reviewer should include here platforms specifics, like
ascii and wide variants of multiple Libc functions in Windows):

potentially vulnerable libc functions

strcpy wcscpy strncpy memcpy bcopy

strcat strncat strccpy strcadd gets

sprintf vsprintf swprintf vswprintf fprintf

syslog snprintf vsnprintf Scanf vscanf

wscanf fscanf sscanf vsscanf vfscanf

strlen wcslen streadd strecpy strtrns

realpath getopt getopt_long getwd getchar

fgetc getc read access chown

chgrp chmod vfork readlink tmpfile

tmpnam tempnam mktemp mkstemp fopen

open exec execl execlp execle

execv execvp system popen atoi

atol drand48 erand48 jrand48 lcong48

lrand48 mrand48 nrand48 random seed48

setstate srand strfry srandom crypt

chroot getenv getlogin cuserid getpw

getpass gsignal ssignal memalign recv

recvfrom recvmsg fread readv strcasecmp

Table 3: list of potentially vulnerable libc functions

Finally, once the manual review of the different risks has been done, the reviewer should take
again the results from the automated review, and fully qualify the vulnerabilities that were not
already qualified (e.g. when itôs was difficult to tell if a result was a false positive or not).

2.2.3.2.4 Reporting phase

In this phase, the idea is creating an inventory for all vulnerabilities found. To do so, for each of
the vulnerability identified, the following information should be written down:

¶ The vulnerability type, i.e. a generic definition of it. Those generic definitions can be found
in the next chapter as well as a bit of explanations for a reader to understand this
vulnerability.

¶ The place in the code where the vulnerability can be found so the file name and the line
number

¶ A code snippet in which the vulnerability can be found. In the case some data flow is
required to fully understand the vulnerability in the code snippet for a reader, it is
interesting to provide multiple code snippets explaining the data flow between the

VESSEDIA D1.7 Page 13 of 104

vulnerability declaration and vulnerability impact (i.e. from where the vulnerability is in fact
declared to the point where it has a real impact on the application).

2.2.3.3 Vulnerability analysis phase

This phase is a consolidation phase, so not necessary, but really interesting in a proper audit.
The idea is to be able to fully determine the risk of a vulnerability found, in order for the editor to
have a plan of remediation. Indeed, this plan permits to know what to prioritize to correct the
application. A diagram presenting this phase is the following:

Figure 4: vulnerability analysis sub-phases

First, the exploitability of each vulnerability identified is determined. Then, a risk analysis can be
realized. Finally, security countermeasures can be defined.

2.2.3.3.1 Exploitability determination phase

This phase aims at determining if a vulnerability is exploitable, that means, can an attacker
leverage the vulnerabilities identified for its own profit (data theft, unauthorized access,
destructioné)? Indeed, even if a vulnerability has been identified, it is not necessarily exploitable.
This step should also be taken apart from the fact that an exploitable vulnerability will or will not
be exploited by an attacker.

Moreover, from a business point of view, it is always interesting if the reviewer can provide some
code that shows the exploitability of a vulnerability. It will provide developers with a proof of
concept that has important psychological impact, that avoids their denial and becomes a proof of
the job being done.

To do so, a full data flow analysis should be realized. The idea is indeed to check:

1) if there is an entry point that can lead to the manipulation of the variables involved in the
vulnerability.

2) If every condition that could lead to exploitation can be met. Indeed, in some case, the
vulnerability found can be only exploited if, for example, enough information can be
leaked.

Once again, there is no generic practical method to determine if a vulnerability can be exploited
or not. This step relies a lot on the reviewerôs expertise, as it needs the capability to understand
how the code behaves.

2.2.3.3.2 Risks analysis phase

Once the exploitability of a vulnerability has been identified, a risk analysis can be performed to
provide a quick insight of a level of risk for this vulnerability (that will be used for the action plan
afterwards the review).

The level of risk is defined as a combination of a level of impact, indicating the gravity of a
produced effect in terms of security, and a level of exploitability, indicating the ease of the
exploitation by an attacker. Of course, the impact level is determined given the contextual
information gathered in the discovery phase, whilst the exploitability level is determined by the
vulnerability analysis.

VESSEDIA D1.7 Page 14 of 104

The score of risk is given by the following matrix:

Impact
low average high

Exploitability

high average high critical

Average

low low

Table 4: matrix giving risk score

Finally, the following criteria have been selected to determine the impact score:

Level Interpretation

Low
The exploitation does not permit the attacker to gain interesting
information nor any additional privileges to compromise an asset of
the system.

Average
The exploitation leads to the compromise of a non-critical asset for
the system.

High
The exploitation leads to the compromise of a critical asset for the
system.

Table 5: impact score determination

And here is the criteria to determine the exploitability score:

Level Interpretation

Low
The exploitation is not feasible in the current state of the program
(but it could become so in future evolutions of it)

Average The exploitation must be realized by an expert attacker.

High
The exploitation can be done by a non-expert attacker, or can even
be realized automatically by tools.

Table 6: exploitability score determination

The attentive reader may have noticed that a different approach has been taken to evaluate the
risk level of a vulnerability here than how it is presented in the report D4.2. Indeed, the vulnerability
cannot be tested in its final environment, and as such the final ñlikelihoodò cannot be evaluated
correctly in general. However, in the case the final application can be reviewed along with the
code, then the D4.2 methodology should be followed.

2.2.3.3.3 Countermeasures definition phase

Finally, the last phase of the audit is to define potential countermeasures to a given vulnerability.
Given the context of the application, the idea is to propose a measure that corrects the
vulnerability with the least impact on the whole architecture and least budget. Indeed, the less
difficult a measure is to be implement, the more likely it will be implemented by the editor.

Unfortunately, there is once again no more practical method to use. In the case the vulnerability
can be corrected in the code, without changing the components design, a patch can be created
by the reviewer. In some cases, the solution might be to attach a COTS (component-of-the-shelf,
e.g. a commercial and already existing component) component with the application.

2.2.3.3.4 Report phase

VESSEDIA D1.7 Page 15 of 104

Once again, the risk analysis should be included in the report for each vulnerability found, as well
as the countermeasures definition. A vulnerability can roughly be presented in the report as given
below:

Risk level (with colors):
Huge

Vulnerabilityôs name

Summary A quick summary

Risk
Impact level Huge and explanations

Exploitability level Huge and explanations

Vulnerability location Source file and line number

Vulnerability description Full description and code snippet

Countermeasure Countermeasure definition

Table 7: example of a vulnerability presentation that could be found in the report

Below is also a note on how the whole report can be presented. A good layout is to provide the
report for two different readers: the technical staff, which is in charge of the code, and the
management staff. The management staff likes to have a quick look on statistics regarding the
analysis, while the technical staff really likes in-depth analyses.

To do so, the general layout of the report can be the following:

1) Introduction
2) Analysis methodology presentation
3) Quick results and statistics
4) Technical part

a. Discovery phase analysis
b. Vulnerabilities
c. Resume of vulnerabilities (basically tables with a prioritization by impact to have

an almost already done risk reduction plan)
5) Conclusion

2.2.3.4 Closure phase

The closure phase is basically the end of the review. The report is finalized, and a closure meeting
is held if possible. Here is a diagram representing it :

Figure 5: closure phase

2.2.3.4.1 Final report phase

Once at this step, the report is finalized and delivered to the editor. From the layout proposed at
paragraph 2.2.3.2.4, this step consists in calculating statistics for the management staff, as well
as doing the resume tables for the technical staff. A quality control is realized and finally the report
is ready to be delivered.

VESSEDIA D1.7 Page 16 of 104

2.2.3.4.2 Ending meeting phase (optional)

Ideally, all reviews should end with an ending meeting. This meeting should present first the risks
identified, as well as statistics on vulnerabilities found and costs of countermeasures. This part is
known as a ñmanagement meeting partò. The idea is so to provide quick insights for the decision-
makers. The second part of the meeting should be technical focused, for developers to be able
to understand all vulnerabilities found. This part is so a review of every vulnerability found,
possibly with a code snippet, and a quick explanation, as well as a slide on countermeasure and
exploitability. Normally, it is ensured all vulnerability is understood by the technical staff of the
editor.

Finally, a meeting is certainly a better approach than just giving a report to the editor. Indeed, it
allows normally for a constructive review of the whole audit, where the results can be discussed
and adjusted live. However, in practice, most of the time, decision-makers will hate the process
unless there is no vulnerability found, and those meetings tend to be bashing meeting.

VESSEDIA D1.7 Page 17 of 104

2.2.4 Quick Summary

Here is a diagram representing a quick summary of the whole methodology:

Figure 6 :source code methodology summary

VESSEDIA D1.7 Page 18 of 104

Chapter 3 Most Common Vulnerabilities in C

C code is more vulnerable than other ñnew high-levelsò language like java or C#. Indeed, it is a
compiled language with a weak semantics, transformed to machine code that is run as is. This
weak semantics permits especially to write code leading to undefined behaviour or that is
intrinsically unsafe. Moreover, there are especially no additional security mechanisms added to
the language itself, because there is no interpreter capable of determining a deviant behaviour.

In order to be able to understand the following chapters, this paragraph introduces the most
common vulnerabilities that can be found in C source code, given practical examples. As such, it
will be possible later to name vulnerabilities when arguing about Frama-C capabilities, and to fully
understand the example analysis.

For a comprehensive list of vulnerabilities that can be found, please refer to the deliverable D1.5-
a of VESSEDIA project.

3.1 Technical background

C is a compiled language, which means it is run directly by the underlying operating system as
machine code. There is no interpreter for a program in C, which is able to detect potential
vulnerabilities while the program is running. It also directly interacts with the underlying resources.
Especially, on any computer, a program is composed of instructions, which tell what to do, and
memory, where the necessary states of our program are stored for it to function normally. To fully
understand, one has to imagine the case of a program which wants to switch the value of two
variables, on a computer capable of handling one value at a time, it basically needs to do
something like that (its instruction):

1) Let A a variable
2) Let B a variable
3) Save B value somewhere
4) Move A value into B
5) move the saved B value to A

There is a need to save the B variable in memory there. Moreover, in order to have this program
functioning, we need to be able to read its instructions. Those are also saved into memory that
will be accessed by the computer. Nowadays, the same principles apply, but at a bigger scale.

To fully understand C vulnerabilities, one has to understand that a C program needs memory,
and that C programs directly interact with it. Nowadays, any memory of a program is divided
basically in four parts, represented on the following diagram:

VESSEDIA D1.7 Page 19 of 104

Figure 7: memory layout of a program

¶ There, the text section is in fact the instructions of the code.

¶ The static/global section is a part of memory that is related to static variables, or global
ones. The memory always has the same size, whatever are the instructions of our program
executed. It is also named the BSS/data section.

¶ The stack and the heap are the part of memory of a program that dynamically moves with
the instructions executed. Basically, it was decided to have two sections here to improve
the global performance of the programs.

Indeed, the stack is a part of the memory allocated by the operating system for the execution of
a task. It functions like a stack of objects, that is, the last item in the stack is the first one that can
be removed. The stack is used in particular when the variables are transmitted from one function
to another. Thanks to the stack, the task does not have to remember the location of an item within
the stack, which makes the stack much faster in its use.

On the opposite, a program needs also some memory that can be managed directly by itself,
where a chunk of it can be allocated, used and freed at any moment. It is also important in the
case a program need a huge memory footprint to avoid using the stack, and that might otherwise
not be fast enough. This part is the heap. Of course, heap management is more complex and
slower because it is necessary to know permanently which block is allocated.

In order to make sure a program wonôt eat all memory that is logically available on a system, the
stack grows towards the heap, and vice versa. When heap and stack are superimposing
themselves, then the underlying OS knows that every memory has been consumed, and it kills
the process to make sure physical memory wonôt be filled by the program.

Nowadays, the stack is used basically to store every local variable of functions and their
arguments, to provide a quick way to operate on them. To make sure a program works, some
other information are also used by the stack, and those are declared by the CPU architecture. To
fully explain it, letôs take the following C program and the classical intel x86 architecture:

void foo (int j , int o){ (3)

 int i =2; (4)

 i = i + j + o; (5)

 [é]

VESSEDIA D1.7 Page 20 of 104

 return ; (6)

}

void main (){ (1)

 int j = 3; (2)

 int o = 4;

 Foo(j , o); (3)

}

In this example, the main function is first loaded (1), allocates two local variables j and o, then
calls foo (3) with the j and o variables as arguments. At this moment, stack is used for memory
management:

First, the argument o for foo is pushed on the stack and then the first argument j, then a function
scope stack is created by first pushing on the stack the value of the returning address of our
function. So, when the stack will be destroyed when foo ends, the address for the program to
continue will be known. Then, the base of the stack of the main function is saved on the stack
(this base is used to navigate more easily between stacks scope, and to provide a quick way to
navigate between function arguments, accessed like ebp+X). All of this is done in (3). Finally, as

foo function use a local variable, i is pushed on the stack (4). Starting at (5), the stack is fully set
for the execution of function foo . When the function ends (6), its stack frame is basically

destroyed: variable i is first removed from it, the base address of main function is restored, and

the return value on the stack is used to go to the end of the main function and continue the
program execution.

Figure 8: stack evolution in the previous program

Heap is managed with totally different mechanisms. As memory can be freed and allocated at
any moment during the execution of the program, allocations are managed as chunks. A chunk
is composed of two parts: a header indicating several information on the allocated data like its
state and also two pointers - one to the previous allocated chunk, and one to the next allocated
chunk - , and finally the allocated data. This actually creates a double linked list of the chunks. In
the meantime, the same double-linked list is used for freed chunks:

VESSEDIA D1.7 Page 21 of 104

Figure 9: heap layout

When a chunk is freed, its state is passed to free and the chunk is moved from the allocated
double-linked list to the freed one:

Figure 10: free of a chunk

Of course, all of this is done to have an overall better performance, as it avoids to modify the
whole chunk to reassemble it with the rest of unallocated memory. When a chunk is reallocated,
it is first searched if there is a freed chunk with sufficient memory space. If this is the case, then
this chunk is removed from the double-linked list of freed chunks and added to the one of the
allocated ones.

VESSEDIA D1.7 Page 22 of 104

Figure 11: reallocating a chunk

If it is not the case, then multiple freed chunks can be merged together. In some memory
managers, there are also additional mechanisms to treat differently the memory given the last
time of use, in order to reorder the double linked lists by priority to increase performance, and
also multiple freed lists depending on the original properties of the chunks. Those mechanisms
are not of interest to understand the following and wonôt be treated here.

Finally, here is a last technical caveat of C language to fully understand vulnerabilities presented
afterwards. C uses what is called pointers as a way to manage variables that is accessing them
by address instead of accessing them by value. Indeed, basically the physical memory has the
following layout:

Figure 12: physical address layout

Indeed, every cell of the physical memory contains a value. But this cell could be also accessed
knowing the offset of another cell in the physical layout. For example, if there is a variable that

VESSEDIA D1.7 Page 23 of 104

needs to be accessed multiple times in a program, instead of keeping a track of the value along,
one solution seems to use its address in memory to finally get its value. The most attentive reader
can also note that by using the stack mechanism for arguments, those are by default passed by
value between functions frames. As such, a value is not propagated between different functions
in C, and the solution is to use the address instead. Address behaves like real addresses, where
by knowing the address of someone, you can reach that one. Pointers are variables containing
the address of another variable like in the following layout:

Figure 13: a pointer in memory

In the figure, the cell n°2 contains the address of the cell 17432 , itself containing the value

390144 . If i variable represents the latter, then the pointer is accessed by the notation &i (the

value 17432), a pointer is dereferenced by using the notation * , meaning the value is accessed

given the address.

3.2 C language intrinsic vulnerabilities

3.2.1 Buffer Overflow

Buffer overflows occur when it is possible in the current flow of a program for a given sized buffer
to have data written above its limits. Buffer overflows can be categorized in three categories:
stack-based, heap-based and BSS-based (given the piece of memory where those occur). Heap-
based overflows occur when dynamically allocated memory is overflowed by filling that memory
area with too much data, usually due to some sort of miscalculation by the programmer. Stack-
based overflows occur when a static-sized local buffer is overflowed by attempting to store more
data within the buffer than its fixed size allows. BSS-based overflows occur when global variables
memory can be overwritten, otherwise due to one of the two precedent overflows, or directly by
an overflow of a static sized buffer located within the BSS.

We will illustrate a classical buffer overflow occurring on the stack. Letôs consider the following
code:

1 #include <stdio . h>

2 #include <string . h>

3

4 int main (void)

VESSEDIA D1.7 Page 24 of 104

5 {

6 int pass = 0;

7 char buff [12];

8

9 printf (" \ n Enter the password : \ n");

10 fgets (buff , 20 , stdin);

11

12 if (strcmp (buff , "VessediaPWD"))

13 {

14 printf (" \ n Wrong Password \ n");

15 }

16 else

17 {

18 printf (" \ n Correct Password \ n");

19 pass = 1;

20 }

21

22 if (pass)

23 {

24 printf (" \ n Root privileges given to the user \ n");

25 }

26

27 return 0;

28}

This code does basically the following: it first allocates some memory for a pass variable, initiated
to zero, holding the result of the authentication of the user, as well as a memory buffer that will
hold the pass given by the user. The password is then asked for, and compared to a hardcoded
value. In the case the given password is the same that the hardcoded one, then the pass variable
is set to 1. In the other case, the variable is let at value 0. Finally, if the pass variable is not zero
(so if authentication succeeded), then the user is accessing the privileged area.

In this example, we can see that the size of buff variable is set to 12 on line 15. On line 18, the

call to fgets is done with a second parameter equal to 20. That means that this function will copy

up to 20 bytes into the buff buffer, even if its size is equal to 20. So, some memory should be

overwritten. To see what data is overwritten, letôs represent the stack of our function. At the start,
once our main function is loaded, our two variables are put on stack in this manner (we avoided
here possible arguments that may have been pushed on stack):

Figure 14: stack layout after variables declaration

VESSEDIA D1.7 Page 25 of 104

Then, when invoking our fgets function, data is copied from the start of our buff buffer, like this:

Figure 15: stack manipulation when writing data in the buffer

In the case more than 15 bytes of data are copied, then the pass variable starts to be overridden
by the data copied, like in the figure below:

Figure 16: pass variable overwrite

So, in our case, if more than 15 bytes are copied, and data copied is not null, then our pass
variable is no more equal to zero. Finally, the buffer overflow here lets a malicious user to access
the privileged area without knowing the password:

VESSEDIA D1.7 Page 26 of 104

Figure 17: privilege escalation without the correct password

Buffer overflow can also occur on heap and BSS. Here is an example of a heap-based buffer
overflow:

1 #include <stdio . h>

2 #include <stdlib . h>

3 #include <string . h>

4

5 #define MAX 32

6 #define LENGTH_USERID 8

7

8 void hash (char * test , char * test2){

9 return ; //should derives code to a hash into userID

10}

11

12 int main (int argc , char * argv []){

13 char * code ; //Final returned code

14 char * userID ;

15 char * key ="thisisasupersecretpassword" ;

16

17 if (argc < 2)

18 {

19 printf ("./%s <your code>" , argv [0]);

20 return 1;

21 }

22

23 code = (char *) malloc (sizeof (char)* MAX);

24 userID = (char *) malloc (sizeof (char)* LENGTH_USERID);

25 memset(code , 1, MAX);

26 memset(userID , 0, LENGTH_USERID);

27

28 strcpy (userID , "guest");

29 strcpy (code , argv [1]); //vulnerability here

30

31 if (strncmp (key , code , 26)== 0){

32 printf ("Your code is OK !! \ \ o/ \ n");

33 hash (code , userID);

34 } else {

35 printf ("Bad code... \ n");

36 }

37

38 if (strcmp (userID , "guest")== 0){

39 printf ("Welcome guest... \ n");

40 }

41 else {

42 printf ("Welcome registered user : %s ! \ n" , userID);

43 }

44 free (code);

45 free (userID);

46

47 return 0;

48}

VESSEDIA D1.7 Page 27 of 104

In this program, once again the authentication of a user is realized. Basically, one user is
determined by a userID and a password. The idea of this code is to authenticate a user given

its password. Once its password is entered, a hashing function return the correct user associated,
and rights are given based on the userID .

Unfortunately, the program is subject to a heap-based overflow, permitting to overwrite the
userID : two consequent allocations are made on the heap, at lines 23 and 24. That means that

code and userID are actually following each other on the heap, and that when there is a buffer

overflow in code , then userID may be overwritten. Especially here, we see that code is allocated

a given size and that command line parameter is actually copied into it. However, this parameter
can be of any size, and strcpy makes the copy byte by byte until the provided string to copy has

a null-byte. Thus, userID may be overridden, and an access to a privileged area can be granted

here:

Figure 18 : heap overflow exploitation from the previous program

Finally, here is a buffer overflow occurring on BSS. Those buffer overflows are in general less
exploitable because there is a need of some special configuration. Indeed, as already explained
within the previous chapter, BSS is a memory region allocated before the heap, of a given size,
because every global variable size going there is known in advance. Then, most of the variables
that will be accessed are either stack or heap ones, and as it is not possible to write memory past
the heap base (without arbitrary write), variables in BSS will most of the time not be affected by
an overflow. However, here is a case of an exploitable BSS buffer overflow that may lead to
execution flow hijacking:

1 #include <stdio . h>

2 #include <stdlib . h>

3

4 char username [512] = { 1};

5 void (* _atexit)(int) = exit ;

6

7 void cp_username (char * name, const char * arg)

8 {

9 while ((*(name++) = *(arg ++)));

10 * name = 0;

11}

12

13 int main (int argc , char ** argv)

14{

15 if (argc != 2)

16 {

17 printf ("[-] Usage : %s <username> \ n" , argv [0]);

18 exit (0);

19 }

20

21 cp_username (username , argv [1]);

22 printf ("[+] Running program with username : %s \ n" , username);

23

24 _atexit (0);

25 return 0;

26}

Basically, this program simply asks for a userôs name to the user, copy it to username variable,

and finally executes the rest of its instructions based on the username (more than simply exit, but
here it is a projection).

As we can see, there is a buffer allocated on the BSS segment, as well as a function pointer. The
function cp_username does not check the length of the provided name to be copied, and as

VESSEDIA D1.7 Page 28 of 104

such, it may be possible to write past the username buffer, directly onto the function pointer,

which is called afterwards. We can control the value of a pointer which will be called as a function.
In case we already know the address of an interesting function, one can call it directly.

Here is an example on how to exploit this code: One can enter as name what is called a shellcode,
which is a piece of directly executable machine code, followed by junk data to fill the buffer, and
finally the address value of the start of our shellcode. To sum up, here is a little schema
representing the hijack of control flow:

Figure 19: control flow hijack due to BSS overflow

And here is a screenshot showing it to be used to pop a shell directly on the machine:

Figure 20: bss overflow to control flow hijack

3.2.2 Null pointer dereference

A null-pointer dereference takes place when a pointer with NULL as value is used as if it pointed

to a valid memory area. This vulnerability usually results in a denial of service because of process
kill, and not a hijacking of a process execution flow. Indeed, accessing the zero address on most
CPU, in ring 3, results in an access violation, and then the process is killed by the kernel. However,
in the kernel memory, the address zero does actually exist. As such, this case is really interesting
in kernel exploitation, as it permits to get the base address of the kernel. By the way, this
vulnerability is still interesting in the case of an application that needs a high-availability such as
a server, because a denial of service might be critical.

Letôs imagine a SCADA server, using a proprietary protocol whose packets size is not
predetermined. This server will basically need to read the size of the packet received, and
allocates memory of that size in order to fill relevant parsing structures. Thus, a hypothetical code
that handles the incoming of a packet is the following:

1 //[...]

2 #include <stdio . h>

VESSEDIA D1.7 Page 29 of 104

3 #include <string . h>

4 #include <stdlib . h>

5

6 //[...]

7

8 typedef struct {

9 unsigned int address ;

10 unsigned char size ;

11 char * data ;

12} packet_t ;

13

14 void create_packet (raw_data_t * raw_data , packet_t * new_packet){

15 new_packet - >address = (unsigned int) strtoul (raw_data , NULL, 16);

16 new_packet - >size = (unsigned char)(raw_data [4]);

17 if (new_packet - >size > 5 && new_packet - >size < 255){

18 new_packet - >data = malloc (new_packet - >size * sizeof (char)+ 1);

19 memset(new_packet - >data , 0, new_packet - >size +1);

20 memmove(new_packet - >data ,(char *)(raw_data +5), new_packet - >size);

21 }

22 else {

23 new_packet - >data =0;

24 }

25}

26

27 void debug_packet (packet_t * packet){

28 printf ("contents of packet address is %i \ n" , packet - >address);

29 printf ("contents of packet size is %i \ n" , packet - >size);

30 printf ("contents of packet data[0] is %c \ n" , (packet - >data)[0]);

31}

32

33//[...]

34

35 void main (){

36 raw_data_t * raw_data ;

37 //[...]

38 while (server_on){

39 packet_t packet ;

40 gather_raw_data (raw_data);

41 create_packet (raw_data ,& packet);

42

43#ifdef DEBUG

44 debug_packet (& packet);

45#endif

46

47 clean_packet_data (& packet);

48 //[...]

49 }

50 printf ("quitting server \ n");

51}

The code basically does the following: a server is started, which is an infinite loop where each
packet is gathered (we can imagine those packets are stored in a circular buffer by the network
card) by the gather_raw_data function. As such, a packet structure is filled, which could be

used for treatment by the handle_packet function. Finally, memory allocated is cleaned in

clean_packet_data function. In the middle of the main function, one can see that in the case

the program is compiled with the DEBUG parameter, then a debug function prints the contents of

packets structures created that way.

As we can see in the declaration of the type packet_t above, a packet is formed by an address,

which is a field of 4 byte, then a size on one byte, and finally its data, which can be of any size.
As such, a packet is at least normally 5 bytes long, and the field size should normally indicate a

VESSEDIA D1.7 Page 30 of 104

size of more than 5. So, what happens at line 17 is the fact that if the size indicated by an incoming
packet is less than five, then the packet is invalid, and its data is set to zero.

But, when the packet is accessed in the debug function, then data is printed. As such, the pointer
to packet data is dereferenced. When the size is less than five, typically in the case an attacker
sends a packet with a size of zero, then the packet data field set to zero is dereferenced, leading
to the vulnerability. That results in a segmentation fault, a kill of our program:

Figure 21: segmentation fault due to null pointer dereference

3.2.3 Uninitialized variable utilization

C language does not provide a way to initialize automatically variables. As such, if a variable is
declared without initialization, the content of this variable is actually undefined, as it will point to
the memory previously in place (basically, stack space is allocated as is, without any push of an
initializer variable on the space allocated). Variables may have some completely unexpected
values, what may lead to security error, as in this variant of our authentication program:

1 #include <stdio . h>

2 #include <string . h>

3

4 int main (void)

5 {

6 int pass ;

7 char buff [16];

8

9 printf (" \ n Enter the password : \ n");

10 fgets (buff , sizeof (buff), stdin);

11

12 if (strncmp (buff , "thegeekstuff" , 16))

13 {

14 printf (" \ n Wrong Password \ n");

15 }

16 else

17 {

18 printf (" \ n Correct Password \ n");

19 pass = 1;

20 }

21

22 if (pass)

23 {

24 /* Now Give root or admin rights to user*/

25 printf (" \ n Root privileges given to the user \ n");

26 }

27

28 return 0;

29 }

Here, the pass variable is not initialized and will contains the value of the memory that was

present when assigning the variable. So if the memory was not nullified, then the pass variable
will not be equal to zero, which means that the user will be authenticated even without giving the
correct password:

VESSEDIA D1.7 Page 31 of 104

Figure 22: uninitialized variable utilisation

3.2.4 Double free

A double free vulnerability occurs when a dynamically allocated variable is freed twice. As a result,
the heap management for the program becomes corrupted and the program has an undefined
behavior. In some cases, a denial of service will occur while sometimes it may be possible for an
attacker to alter the execution flow of the program.

This vulnerability really depends on how the heap management of the program is realized. So, in
the case of the following snippet of code:

a = malloc (10);

b = malloc (10);

free (a);

free (a); // Double Free

c = malloc (10);

d = malloc (10);

When a is freed for the first time, the two lists of chunks become:

Allocated: head - > b - > tail

Freed: head - > a - > tail

When a is freed a second time, the lists become:

Allocated: head - > b - > tail

Freed: head - > a - > a - > tail

Then, when c and d are allocated, as they have the same size than a, they will both be allocated

given the two free chunks pointed to a:

Allocated: head - > b - > c (points to address a) - > d (points to address

a) - > tail

Freed: head - > tail

So, in the rest of the program, when c and d are manipulated, they both manipulates the same
region of memory.

To illustrate an example of such a problem (in fact, this vulnerability is often only useful for
exploitation of control flow in case of just-in-time-compiled code), letôs take the following code that
simulates a tiny Missiles platform management application. Basically, this platform is operated by
a soldier, who can be called by generals to realize several operations:

1 #include <stdio . h>

2 #include <stdlib . h>

3 #include <string . h>

4

5 #define NB_USER 32

6

7 typedef struct {

8 int ID ;

VESSEDIA D1.7 Page 32 of 104

9 char password [10];

10 } user_t ;

11

12 //[...]

13

14 void retrieve_password (user_t ** user_list , int ID){

15 if (user_list [ID])

16 printf (" \ thi, here is your password : %s \ n" , user_list [ID] -

>password);

17 else

18 printf (" \ tnon existing user \ n");

19 }

20

21 void create_user (user_t ** user_list){

22 user_t * new_user = malloc (sizeof (user_t));

23 int i ;

24 for (i =0; i <NB_USER; i ++){

25 if (! user_list [i]){

26 new_user - >ID = i ;

27 printf (" \ tplease enter password (9 chars max) : ");

28 char tmp_buffer [10];

29 scanf ("%s" , tmp_buffer);

30 memmove(new_user - >password , tmp_buffer , 9);

31 user_list [i]= new_user ;

32 printf (" \ tuser created, here is the ID : %i \ n" , i);

33 return ;

34 }

35 }

36 printf (" \ tcan't create a new user! \ n");

37 return ;

38 }

39

40 void get_user_id (int * ID){

41 int i ;

42 printf (" \ twhat's the ID to be used here ? : ");

43 scanf ("%d" ,& i);

44 * ID =i ;

45 }

46

47 void delete_user (user_t ** user_list , int ID){

48 free (user_list [ID]);

49 }

50

51 //[...]

52

53 int main (int argc , const char * argv []){

54 int loopout = 0;

55 int choice ;

56 int current_ID =0;

57 user_t ** user_list = malloc (NB_USER* sizeof (user_t *));

58 while (! loopout)

59 {

60 printf (" \ nMissiles platform management \ n");

61 printf ("please select: \ n");

62 printf ("1. create a new user \ n");

63 printf ("2. delete a user \ n");

64 printf ("3. retrieve user password \ n");

65 printf ("4. quit \ n\ tnum: ");

66 scanf ("%i" ,& choice);

67 switch (choice)

68 {

69 case 1:

70 create_user (user_list);

VESSEDIA D1.7 Page 33 of 104

71 break ;

72 case 2:

73 get_user_id (& current_ID);

74 delete_user (user_list , current_ID);

75 break ;

76 case 3:

77 get_user_id (& current_ID);

78 retrieve_password (user_list , current_ID);

79 break ;

80 case 4:

81 exit (0);

82 break ;

83 default :

84 printf ("wrong choice \ n");

85 break ;

86 }

87 }

88

89 return 0;

90 }

This code presents a menu for the operator to realize different operations of managing the users
of the missile platform. When a colonel calls the operator, then the latter realizes all operations
asked for because of his grade. However, multiple vulnerabilities can be found in this code
because there are no sanitizing checks while manipulating the users. Indeed, those are
manipulated through their ID, and operations can then be realized in whatever order. It is possible
to delete the same user twice, or to ask for the password of a deleted user.

Letôs imagine the following scenario (completely fancy to be honest):

First, the attacker infiltrates the army, and becomes Skywalker officer. He then imitates colonel
Vador and calls the operator of the missile platform: ñï Hi administrator, here is colonel Vador. I
need you to delete my account because it may have been compromised.ò

VESSEDIA D1.7 Page 34 of 104

The administrator executes
that, and then receives a
second call, also from the same
attacker: ñHi administrator, here
is colonel Palpatine. I need you
to delete colonel Vadorôs
account, and then create him a
new account. Then, you should
also create a new account for
the new officer Skywalker.ò

The administrator executes the
order, calls officer Skywalker,
which is the attacker, to create
his account, and finally calls
colonel Vador, to create his
account. Once all of this has
been realized, the attacker calls
to request his password
because ñ- it does not workò.

In this case, colonel Vadorôs
account has been deleted
twice, its user has been freed
twice. Then, the attacker gets
an account which points to the
old memory of colonel Vadorôs
account (because a user takes
the same size in memory at
whatever times), and colonel
Vador gets also a new account,
pointing also to his own old
memory area. As such, colonel
Vadorôs new account and
Officer Skywalkerôs account
point to the same memory. As
colonel Vadorôs account is
created last, his password is
put in that memory region.
Then, when the attacker asks
for his password, he indeed
retrieves colonel Vadorôs one.
As such, the attacker gained
colonel Vadorôs privileges on
the missiles platform.

Here is a screenshot illustrating
that scenario:

Figure 23: double free
vulnerability leveraged into an

identity theft

VESSEDIA D1.7 Page 35 of 104

3.2.5 Use-after-free

Use-after-free vulnerability is, as indicated by his name, caused by the use of an already freed

dangling pointer. Once again, as in the previous vulnerability, the heap memory manager
mechanisms are important to take advantage of this vulnerability.

For example, in the case a chunk is freed, it can be used afterwards by the memory manager for
another object. When the use of the freed object occurs, the program believes to manage another
object than the one really managed.

The Missile management platform used in the previous paragraph is also vulnerable to use-after-
free. Letôs get back to the scenario of an attacker calling the operator: ñHi operator, here is colonel
Palpatine. Please delete my accountò. The attacker then waits few days, a user has been created.
As the user created take the same amount of space than Colonel Palpatineôs user identity, the
memory chunk for this new user is the same than the one used for colonel Palpatine. The attacker
can call again the operator and say ñ-Hi there, here is colonel Palpatine and here is my ID. Please
tell me my password backò. The operator will give the password that points now to the one of the
newly user created. The attacker gains another credential to use on the missile platform.

Here is a screenshot to illustrate this vulnerability:

Figure 24: use-after-tree vulnerability leveraged into identity theft

VESSEDIA D1.7 Page 36 of 104

3.2.6 Integer Overflow

In C, every type data is coded on a fixed size bit field. For example, an integer as defined with the
int keyword is coded on 32 bits even on 64 bits platforms. As such, an integer can be

represented by 31 bits for its value, and one bit for its sign. An i nt must have a value between -

648ױ483ױ147ױ2 to 2647ױ483ױ147ױ .

When an operation is realized on such a data field, and this operation creates a data field that is
out-of-bound of the theoretical limits, the result is in fact computed using the modulo arithmetic
fusing the size of the field. This often results in miscalculations, and that can lead to out-of-bounds
write. For example, flight 501 of the rocket Ariane 5 crashed because of such a vulnerability.

To illustrate the vulnerability, letôs take a modified version of our IOT server from the paragraph
3.2.2 :

1 #include <stdio . h>

2 #include <string . h>

3 #include <stdlib . h>

4

5 typedef struct {

6 unsigned int address ;

7 unsigned char size ;

8 char * data ;

9 } packet ;

10

11 void handle_packet (char * raw_data , packet * new_packet){

12 unsigned char new_size ;

13 new_packet - >address = (unsigned int) strtoul (raw_data , NULL, 16);

14 new_packet - >size = (unsigned char)(raw_data [4]);

15 if (new_packet - >size > 5){

16 new_size = new_packet - >size +1;

17 new_packet - >data = malloc (new_size);

18 memset(new_packet - >data , 0, new_size);

19 memmove(new_packet - >data ,(char *)(raw_data +5), new_packet - >size);

20 raw_data =raw_data +new_packet - >size - 5;

21 }

22 else {

23 new_packet - >data =malloc (sizeof (char));

24 memset(new_packet - >data , 0, 1);

25 raw_data =raw_data +5;

26 }

27 }

28

29 void clean_packet_data (packet * packet){

30 free (packet - >data);

31 }

32

33 //[...]

34 void main (){

35 char * raw_data ;

36 init_raw_data (raw_data);

37 //[...]

38 int server_on =1;

39 while (server_on){

40 packet packet ;

41 gather_raw_data (raw_data);

42 handle_packet (raw_data ,& packet);

43 clean_packet_data (& packet);

44 server_on =0;

45 }

46 printf ("quitting server \ n");

47 }

VESSEDIA D1.7 Page 37 of 104

In this version, the null pointer dereference vulnerability has been removed, by making sure that
packet data is allocated at least even if the size is less than five. However, the check on line 14
has been modified and it is no more checked that the size is less than 255.

The size is an unsigned char, meaning the data is coded on 8 bits, without any bit for the sign.
The size can have a value between 0 to 255. As such, if a packet with a size of 255 is read, then
the new_size variable, which also an unsigned char, is set to (255+1)%2 8=0 . As such, when

the memmove operation is called afterwards, an out-of-bounds write occurs. There is also to note

that the malloc return code is not checked, that can lead also to an out-of-bounds write.

3.2.7 Off-by-one

Off-by-one bugs are basically buffer overflows whose outreach is a writing of only one more byte.
They got special subclass vulnerabilities as by overwriting only one byte, exploitation methods
are by far different than those in classical buffer overflows. Especially, those are much more
difficult to exploit, and the only meaningful cases for an exploitation is when a given function
pointer can be overwritten by one byte. Moreover, detecting them is also not trivial and requires
a deep understanding of C standard library.

To illustrate this class of vulnerabilities, letôs take again the authorization handler from the buffer
overflow case. Here, the developer modified the program in an attempt to correct the buffer
overflow, and to have a better amplitude on the input, while retaining the fact that the password
is still coded on 15 bytes:

1 #include <stdio . h>

2 #include <string . h>

3

4 int main (void)

5 {

6 int not_logged = 1;

7 char buff [15];

8 char s [64];

9

10 memset(buff , 0, sizeof (buff));

11

12 printf (" \ n Enter the password : \ n");

13 fgets (s , 63 , stdin);

14 strncat (buff , s , sizeof (buff));

15

16 if (strcmp (buff , "thegeekstuff"))

17 {

18 printf (" \ n Wrong Password \ n");

19 }

20 else

21 {

22 printf (" \ n Correct Password \ n");

23 not_logged = 0;

24 }

25

26 if (! not_logged)

27 {

28 /* Now Give root or admin rights to user*/

29 printf (" \ n Root privileges given to the user \ n");

30 }

31

32 return 0;

33 }

VESSEDIA D1.7 Page 38 of 104

In this example, the bug comes from an improper call to strncat(3) function. As it is said in the

manual page, this function adds a terminating null byte. So, as the destination buffer size doesnôt
take this into account, an overflow of 1 byte might happen, overwriting stack data, which is here
the not_logged variable. As such, a user with a wrong password can still access the privileged

area:

Figure 25: execution of the off-by-one program

3.2.8 Format String

Format string vulnerability is a mishandling of the printf -like functions parameters, and is one

of the most dangerous vulnerability because it gives attacker the ability to read or write anywhere
in memory. To understand this vulnerability, one has to understand how printf-like functions work.
In normal cases, the printf functions use a formatter, which is a string indicating the format of

the variables to print, and then the list of all variables to print. For example, one call to printf might
be the following:

printf(òhello %só,username); where òhello %só is the formatter.

When such a function is called, its parameters are passed on the stack as already explained in
paragraph 3.1. Our previous call has the following stack:

Figure 26: stack layout when calling printf

Then, internally and in a simplified version, the printf function parses its first argument, and

stops at each identifier like %s. When it encounters such an identifier, the next argument present

on the stack is gathered to form the final string to print. Finally, the final string is sent to stdout.

VESSEDIA D1.7 Page 39 of 104

Figure 27: internal working of printf

There is a need to have the same number of variables than the number of identifiers in the
formatter, because in this case there is the right number of arguments to pop off the stack to be
able to form the final string.

A format string vulnerability occurs in reality when this condition is not verified. In the case for
example there is no variable as a second argument, while a formatter with one identifier is passed
as the first argument, then printf will still try to read the stack for its second argument. As this
second argument is not present on stack, then the previous value of memory at this place will be
read instead and added to the final string. So, for example, a ñ%xò identifier passed as the first
argument, without a variable as a second argument, will print the first value on the stack in
hexadecimal, leading to an arbitrary read condition. To illustrate this, letôs take again the
authorization management application. This time, the developer chose to use a configuration file
to have the root password:

1 #include <stdio . h>

2 #include <unistd . h>

3 #include <string . h>

4

5 int main (int argc , char * argv []){

6 int not_logged =1;

7 char symbol ;

8 FILE * secret_file = fopen ("config.txt" , "r");

9 char buffer [128];

10 char secret [32]={ 0};

11

12 if (secret_file != NULL)

13 {

14 size_t newLen = fread (secret , sizeof (char), 31 , secret_file);

15 if (ferror (secret_file) != 0)

16 {

17 fputs ("Error reading file" , stderr);

18 } else

19 {

20 secret [newLen++] = ' \ 0' ; /* Just to be safe. */

21 }

22 fclose (secret_file);

23 }

24

25 printf (" \ n Enter the password : \ n");

26 fgets (buffer , sizeof (buffer), stdin);

27

28 if (strcmp (buffer , secret))

29 {

30 printf (" \ n Wrong Password, you have entered : ");

31 printf (buffer);

VESSEDIA D1.7 Page 40 of 104

32 printf (". Make sure to use the correct one \ n");

33 }

34 else

35 {

36 printf (" \ n Correct Password \ n");

37 not_logged = 0;

38 }

39

40 if (! not_logged)

41 {

42 printf (" \ n Root privileges given to the user \ n");

43 }

44

45 return 0;

46}

As one can see, when the password is not the good one, then it is printed on the console, but no
format identifier was used. As such, the vulnerability can be triggered there. So, an attacker can
leverage this to retrieve the root password without having any access to the configuration file:

Figure 28: format string vulnerability used to read secret file

In the above screenshot, the identifier %08x is used to read 32 bits at a time from the stack. The

hexadecimal values are then decoded by the todecode python script. The way it works is the

following:

Figure 29: format string vulnerability used to parse the stack

As shown in the previous figure, it is possible to read the parentôs stack, which is here the main

function. Especially, the parent stack should contain first newLen variable and second the

secret variable, the secret is readable.

3.2.9 Type confusion

VESSEDIA D1.7 Page 41 of 104

A type confusion vulnerability occurs when a variable can point to two different types, and it is
treated as of the wrong type. It is especially true while using the union keyword in C. Unfortunately,
this vulnerability is not common in C, and is much more useful in object language, because in
those, methods are parts of the object. It is possible to call wrong methods on objects which can
lead to a control flow hijack. Here is an example in C, without any security issues after exploitation:

1 #define NAME_TYPE 1

2 #define ID _TYPE 2

3

4 struct MessageBuffer

5 {

6 int msgType ;

7 union {

8 char * name;

9 int nameID ;

10 };

11};

12

13 int main (int argc , char ** argv) {

14 struct MessageBuffer buf ;

15 char * defaultMessage = "Hello World" ;

16

17 buf . msgType = NAME_TYPE;

18 buf . name = defaultMessage ;

19 printf ("Pointer of buf.name is %p \ n" , buf . name);

20 /* This particular value for nameID is used to make the code

architecture - independent. If coming from untrusted input, it could be any

value. */

21

22 buf . nameID = (int)(defaultMessage + 1);

23 printf ("Pointer of buf.name is now %p \ n" , buf . name);

24 if (buf . msgType == NAME_TYPE) {

25 printf ("Message: %s \ n" , buf . name);

26 }

27 else {

28 printf ("Message: Use ID %d \ n" , buf . nameID);

29 }

30}

The code intends to process the message as a NAME_TYPE, and sets the default message to

"Hello World." However, since both buf.name and buf.nameID are part of the same union, they

can act as aliases for the same memory location, depending on memory layout after compilation.
As a result, modification of buf.nameID (which is an int) can effectively modify the pointer that

is stored in buf.name ,a string.

The execution of the program generates output such as:

Figure 30: example of type confusion

The pointer buf.name was changed, even though buf.name was not explicitly modified.

VESSEDIA D1.7 Page 42 of 104

3.3 Cryptographic vulnerabilities

This paragraph wonôt go into many details, as explaining cryptographic background there is a
hard and tedious task that requires another report on its own.

3.3.1 Non-respect to cryptographic standards

Although those are not direct vulnerabilities, there is today a defined standard on most of the
cryptographic functions used. Indeed, using algorithms that have been cracked, or using
algorithms that are known to be vulnerable to a theoretical attack, may lead a user to create a
cryptographic attack on your application. This could especially be used to gather secrets held by
the application.

For example, in Europe, the SOG-IS agreement provides a baseline indicating approved
cryptographic algorithms8.

More than algorithms, there is also a need for any algorithm to verify some sets of cryptographic
properties. Especially, those sets of properties are important because they are ensuring
theoretical non-exploitability. One example of it is what is called the distribution on a hashing
algorithm, ensuring that if one byte of the original message is changed, then at least half of the
total bytes of the hashed message is changed.

In most cases, it is verified that the algorithm was not self-developed and got no cryptographic
review.

3.3.2 Misuse of cryptographic algorithms

Cryptography is a hard topic. As such, an evaluator can often see a misuse of cryptographic
algorithms. Indeed, the developer tried to obtain a set of cryptographic properties, but the
algorithm chosen may not bring all those properties. For example, two of cryptographic properties
are authentication, which is the act of confirming the truth of an attribute of a single piece of data
claimed true by an entity, like its identity, and integrity, assuring the accuracy and completeness
of some data over its entire lifecycle. Most hashing algorithms provide only the latter, while an
asymmetric key algorithm like RSA can provide both. However, sometimes, hashing is used to
authenticate one user on an application.

3.4 C vulnerabilities depending on the environment

3.4.1 Race condition

A race condition occurs when there is some time lapse between the access to a resource, and
then the use or destruction of this resource. If this resource can be controlled by an attacker, then
he may manipulate it in this meantime. The name comes from the fact that the attacker is in race
with the legit program to modify the accessed resource in between. This vulnerability can be used
to elevate oneôs privileges.

As an example, letôs say a program has to authenticate users against a credential given in a
ciphered file. To do so, the program first opens the ciphered file to decipher it into a temporary
file on the system (that does not have any systemôs controlled access), asks the user about its
credentials, then read the deciphered file to compare the credential given by the user, and finally
destroys the temporary file:

1 #include <stdio . h>

8 https://www.sogis.org/uk/supporting_doc_en.html

VESSEDIA D1.7 Page 43 of 104

2 #include <unistd . h>

3 #include <string . h>

4

5 void decipher_file (char * secret_file , char * temp_file , FILE **

temp_file_handle){

6 //this function basically opens the secret file and the temp file

7 // then deciphers the contents of secret file into temp file

8 //and finally returns a handle towards temp_file

9 }

10

11 int main (int argc , char * argv []){

12 int not_logged =1;

13 char symbol ;

14 char secret_file []= "config.txt" ;

15 char temp_file []= "/tmp/tmp_deciphered.txt" ;

16 FILE * temp_file_handle ;

17 char buffer [32]={ 0};

18 char secret [32]={ 0};

19

20 printf ("deciphering file \ n");

21 decipher_file (secret_file , temp_file ,& temp_file_handle);

22 printf (" \ n Enter the password : \ n");

23 fgets (buffer , sizeof (buffer), stdin);

24 if (temp_file_handle != NULL)

25 {

26 size_t newLen = fread (secret , sizeof (char), 32 ,

temp_file_handle);

27 if (ferror (temp_file_handle) != 0) {

28 fputs ("Error reading file" , stderr);

29 } else {

30 secret [newLen++] = ' \ 0' ; /* Just to be safe. */

31 }

32 fclose (temp_file_handle);

33 }

34

35 if (strcmp (buffer , secret))

36 {

37 printf (" \ n Wrong Password \ n");

38 }

39 else

40 {

41 printf (" \ n Correct Password \ n");

42 not_logged = 0;

43 }

44

45 if (! not_logged)

46 {

47 printf (" \ n Root privileges given to the user \ n");

48 }

49

50 return 0;

51 }

Of course, if an attacker is able to modify the file while the user is entering the password, because
a handle is already opened on it, then he can control what will be the value the credentials of the
user will be tested against.

Here is a screenshot illustrating this case (please make sure to look at the times). First, a run of
the program is realized, the user does not have the correct credentials. Then the same run is
realized, but while the user is entering the password, the tmp_file is modified. He can then

authenticate himself:

VESSEDIA D1.7 Page 44 of 104

Figure 31: race condition illustration

3.4.2 Path manipulation

Path Manipulation vulnerabilities occur when a program attempts to access an external resource,
that may be controlled by the attacker, without controlling that the path given to this external
resource is correct. As such, the path may point to an invalid resource.

For example, letôs say a program run by a privileged user invoke the ls command to check about
some files on the system:

1 #include <stdio . h>

2 #include <stdlib . h>

3

4 int main (int argc , char * argv [])

5 {

6 FILE * fp ;

7 char path [1035];

8

9 /* Open the command for reading. */

10 fp = popen ("ls /etc/" , "r");

11 if (fp == NULL)

12 {

13 printf ("Failed to run command \ n");

14 exit (1);

15 }

16 while (fgets (path , sizeof (path) - 1, fp) != NULL)

17 {

18 //do something

19 }

20

21 /* close */

22 pclose (fp);

23

24 return 0;

25 }

One can see at line 10, that a call to the ls command is realized, without using an absolute path.

In such a scenario, the underlying operating system will first search the ls command in the file

system, and then invoke it. On Linux, that search is done in the order given by the PATH

environment variable, which is a series of file system paths interspersed with the delimiter ó:ô. The

VESSEDIA D1.7 Page 45 of 104

search is done as this: the first path in PATH is looked into for the presence of a ls binary. If the

ls binary is found, then it is invoked, meaning the command is invoked. Otherwise, the second

path is taken and the same examination is realized. This continues until the ls binary is found in

one of the underlying path, or until there is no more path to investigate given by PATH variable.

So, if the attacker manipulates the PATH variable by setting it to /tmp and then creates a false

ls binary in this /tmp folder, then this attacker-controlled program will be called instead. Here is

an example to illustrate that kind of manipulation from the program above:

Figure 32: path manipulation example

3.4.3 SQL Injection

A SQL injection appears when a program runs some SQL queries, without separating the request
from the fields of the query. That means that the fields may be manipulated by an attacker to
modify the meaning of the request. Letôs take for the example the following program that
authenticates a user using the MySQL API :

1 #include <stdio . h>

2 #include <stdlib . h>

3 #include <mysql . h>

4

5 #define QUERY_LEN 512

6

7 int main (int argc , char * argv [])

8 {

9 char name[32];

10 char password [32];

11

12 MYSQL mysql ;

13 mysql_init (& mysql);

14 mysql_options (& mysql , MYSQL_READ_DEFAULT_GROUP, "option");

15

 if (mysql_real_connect (& mysql , "www.goldzoneweb.info" , "mon_pseudo" , "****

*" , "ma_base" , 0, NULL, 0))

16 {

17 printf (" \ n Enter your name : \ n");

18 fgets (name, sizeof (name), stdin);

19

20 printf (" \ n Enter your password : \ n");

21 fgets (password , sizeof (password), stdin);

22

23 char myquery [QUERY_LEN];

24 sprintf (myquery , "select * from users where name='%s' and

password='%s'" , name, password);

25

26 if (mysql_query (conn , myquery))

27 {

VESSEDIA D1.7 Page 46 of 104

28 fprintf (stderr , "%s\ n" , mysql_error (conn));

29 exit (1);

30 }

31

32 MYSQL_RES * result = NULL;

33 MYSQL_ROW row;

34 result = mysql_use_result (& mysql);

35 if (result != NULLL)

36 {

37 printf ("Welcome authenticated user : %s" , name);

38 }

39 mysql_free_result (result);

40 mysql_close (& mysql);

41 }

42 else

43 {

44 printf ("an error occured \ n");

45 }

46

47 return 0;

48 }

49

As one can see, the program uses the sprintf function in order to concatenate the query with

the fields given by the user. If the user uses the following credentials admin/adminpass , then

the query becomes:

select * from users where name=õadminõ and password=õadminpassõ

It is then checked if the result of the query is not null. In this case, that means the user exists.

An attacker can leverage the vulnerability by providing the following credentials to the application:
adminô -- /pass . As such, the query becomes the following:

select * from users where name =õadminõ -- and password=õpassõ

The end of the query is treated as a comment and the query becomes:

select * from users where name =õadminõ

So, only the verification on name will be conducted. The attacker can finally gain privileged
access.

3.4.4 Command Injection

Command injection vulnerability occurs when a program makes a call to an external command
with parameters provided by the attacker. As such, the attacker can potentially make additional
calls to other commands. This call to other commands can really be useful if the program is run
with other privileges than the user one. Indeed, the injected commands will be executed in the
context of the program privileges. Letôs take for example the following program, which is an
ergonomic helper on using SSH:

1 #include <stdio . h>

2 #include <stdlib . h>

3 #include <string . h>

4

5 void connect_to (){

6 char serv_name [32];

7 char username [32];

8 char pass [32];

9 FILE * fp ;

10 char path [1024];

VESSEDIA D1.7 Page 47 of 104

11

12 printf (" \ n Enter server name : ");

13 fgets (serv_name , sizeof (serv_name), stdin);

14 serv_name [strcspn (serv_name , " \ n")] = 0;

15

16 printf (" \ n Enter your user name : ");

17 fgets (username , sizeof (username), stdin);

18 username [strcspn (username , " \ n")] = 0;

19

20 printf (" \ n Enter your password : ");

21 fgets (pass , sizeof (pass), stdin);

22 pass [strcspn (pass , " \ n")] = 0;

23

24 char command[512];

25 sprintf (command, "sshpass - p %s ssh %s@%s" ,

pass , username , serv_name);

26

27 fp = popen (command, "r");

28 if (fp == NULL) {

29 printf ("Failed to run server \ n");

30 exit (1);

31 }

32

33 while (fgets (path , sizeof (path) - 1, fp) != NULL) {

34 printf ("%s" , path);

35 }

36

37 pclose (fp);

38 //now, output must be check for authentication error, and then one

can use the ssh connection

39

40 }

41

42

43 int main (int argc , const char * argv []){

44 int loopout = 0;

45 int choice ;

46 char a;

47 while (! loopout)

48 {

49 printf ("SSH Helper \ n");

50 printf ("please select: \ n");

51 printf ("1. connect to a SSH Server \ n");

52 printf ("2. retrieve/copy a file on a Server \ n");

53 printf ("3. managing SSH authentications \ n");

54 printf ("4. quit \ n\ tnum: ");

55 scanf ("%i" ,& choice);

56 a = getchar ();

57 switch (choice)

58 {

59 case 1:

60 connect_to ();

61 break ;

62 case 2:

63 retrieve_or_copy ();

64 break ;

65 case 3:

66 manage_ssh_authent ();

67 break ;

68 case 4:

69 exit (0);

70 break ;

71 default :

VESSEDIA D1.7 Page 48 of 104

72 printf ("wrong choice \ n");

73 break ;

74 }

75 }

76 return 0;

77 }

78

We see this code provides a menu to the user, asking for what the user wants to do with SSH.
One of the options lets the user to connect to a distant server, then to obtain an access to this
distant shell. When this option is chosen, the user is asked for several parameters, that are then
injected into a call to the SSH command. As such, an attacker may for example provide the
following as a server name ñserver || cat /etc/passw dò, thus the cat command is also

executed in the context of the program.

Here is an illustration of this vulnerability. The current user, nzo , cannot read the file secrets ,

owned by root (1). Our SSH helper is however setuid , which means it is executed in the

context of its owner, root (2). The attacker can leverage the example to read the secrets file:

Figure 33: elevating its privileges through command injection

3.4.5 Logic bugs

Logic bugs are the result of when the logic is not correctly calculated in a program, most often
due to operators precedence, or the missing of some parenthesis. Letôs take the following
program, once again similar to the authentication program already presented:

1 #include <stdio . h>

2 #include <string . h>

3

4 #define FAIL 0

5 #define SUCCESS 1

6

7 int AuthenticateUser (char * password) {

VESSEDIA D1.7 Page 49 of 104

8 return !(strcmp (password , "mysuperpass"));

9 }

10

11 int main (void)

12 {

13 char buff [16];

14

15 printf (" \ n Enter the password : \ n");

16 fgets (buff , sizeof (buff), stdin);

17

18 int isUser = FAIL ;

19

20 if (isUser = AuthenticateUser (buff) == FAIL)

21 {

22 printf (" \ n Wrong password \ n");

23 }

24 else

25 {

26 printf (" \ n Good password \ n");

27 isUser = SUCCESS;

28 }

29

30 if (isUser == SUCCESS)

31 {

32 /* Now Give root or admin rights to user*/

33 printf (" \ n Root privileges given to the user \ n");

34 }

35

36 return 0;

37 }

Once again, the user is asked for its password, which is compared to a hardcoded one. In the
case both values match, then the user is given privileges. Here, the variable holding the result of
the authentication is put on the stack after the buff variable, which means that in any case, no
buffer overflow can overwrite it. However, as one can see, the method that authenticates the user
is called within an if statement (at line 30) with incorrect operator precedence logic. Because the
comparison operator "==" has a higher precedence than the assignment operator "=", the

comparison operator will be evaluated first and if the method returns FAIL then the comparison

will be true, the return variable will be set to true and SUCCESS will be returned. As such, any

password can provide the user privileges:

Figure 34: logic bug leading to wrong privileges given to the user

3.4.6 Contextual vulnerabilities

VESSEDIA D1.7 Page 50 of 104

A number of contextual vulnerabilities can arise. Those vulnerabilities are not bugs directly
integrated in the software, but problems in a security functional component of the software,
interacting with its environment. As those are not related to the code in itself, but are tightly linked
to the context, here is a non-exhaustive list of named potential vulnerabilities that can be found:

¶ A wrong authentication of entities. Here, one can be authenticated in a wrong manner on
the application, thus leading to privilege escalation and identity theft.

¶ An absence of protection of assets. Those assets could be for example, the ciphering keys
used by encryption software, stored in clear text in a database. As such, the compromise
of those assets leads to security problems.

¶ An absence of measures to prevent denials of service.

¶ An absence of logging utilities. This vulnerability is often overlooked, but in highly critical
environment, logging is able to provide legal insurance as well as a way for an
investigation to be held.

¶ The modification of the business parameters. One example here could be a financial
program, using a configuration file. If the configuration file permits to alter taxes or rates,
then the whole business can be impacted.

VESSEDIA D1.7 Page 51 of 104

Chapter 4 On using Frama-C within the proposed

methodology

This paragraph introduces how to incorporate Frama-C tools analysis within the proposed
methodology of the paragraph 2.2. First, Frama-C will be briefly presented. In a second hand, a
way to use concretely Frama-C is presented.

4.1 What is Frama-C?

4.1.1 Description

Frama-C is a static C/C++ source code analyzer, aimed at validation and proof of specifications
of code. As such, it was proposed for highly critical development, to ensure the safety of the code
afterwards. It is built on Ocaml, and has a plug-in architecture: a generic kernel centralizes
information and conduct analyses, and plug-ins may communicate with the kernel and the other
plug-ins via the kernel to provide analyses treatments and results.

The summed-up functioning of Frama-C is the following: First, the code is preprocessed by the
gcc compiler. It produces a code with macro-expansion, header files inclusion and trigraph
replacement. From this, Frama-C builds an abstract syntax tree (AST), i.e. a tree formed by the
tokens of the code, obtained via the parsing of it. Finally, operations of source code analysis are
directly computed on the AST (certainly while doing AST annotation). Finally, this AST and the
results are operated by the several plugins to provide a deeper analysis.

The principal following plugins are shipped with the default Frama-C installation:

¶ Evolved value analysis (EVA): this plugin realizes a lot of operations based on abstract
interpretation. The first ones are to be able to compute at any statement in the program
the different values of the variables from the global and current scope. It also realizes
several checks on memory accesses, like checking if memory accessed in tables or by
pointers is valid. Integer arithmetics are also checked.

¶ E-ACSL plugin: this plugin provides the ability to process E-ACSL statements within the
source-code. Those statements are in fact a language for proof verification, and formal
properties are deducted from them. As such, those properties can then be verified while
running other analyses.

¶ WP plugin: this plugin aids in assisting with proof verification. It will basically check any
formal proof to be verified in the source code, helps with indications when the proof cannot
be verified, and can run multiple provers on those proofs.

¶ Slicing plugin: this plugin produces a slicing of the code to generate an output still
compiling, but with only the statements verifying certain properties.

¶ Impact plugin: this plugin outputs the statements that are impacted by the modification of
a given statement. This plugin seems to rely on the slicing plugin to generates its results.

¶ Metrics plugin: this plugin provides several statistics about the code, like cyclomatic
complexity and EVA coverage estimation.

A more thorough description is given within D3.3 document of VESSEDIA project.

VESSEDIA D1.7 Page 52 of 104

4.1.2 Frama-Côs intended use

Frama-C was intended for code safety, primarily required in highly critical domains like
aeronautics, space and nuclear. As such, it follows to the following environment conditions:

¶ In general, code in such environments run on a single core and use very few system and
user interaction. They are also in general quite small, and do not use libraries much.

¶ Those codes need to verify the enforced development process, and formal properties. So,
whilst code is developed, formal proofs can also be developed.

¶ One of the biggest aims is to ensure there is no undefined nor unspecified behavior in the
program, even in a critical state. As such, the program should be exempt of any bugs or
run-time errors.

¶ The other big aims is to ensure the source code is compliant with some specifications, like
MISRA-C9 for example.

Frama-C seems to be used in the following way in actual industrial environment:

¶ the main code is developed. In the meantime, specifications proofs and formal proofs are
developed. Also, in order to be able to verify all proofs, E-ACSL specifications are
developed.

¶ Once everything is developed, then Frama-C is used to ensure the code verifies the formal
properties developed along with it, by means of proofs, as well as ensuring the absence
of bugs for a code that is self-supporting. Especially, it can be used to ensure that variables
are in a given range at a certain point of the program, and it can also make sure that all
variables are initialized for example.

¶ In the case Frama-C tool discovers an error or a property that is not proven to be satisfied
by the code, the code can be modified. Then, Frama-C is run again on the code, etc. until
it says there is no error and all proofs are verified.

4.1.3 A brief discussion on using Frama-C for security code review

Formal specifications can only be produced by highly mature corporations, where skilled
engineers are dedicated to this job. There is a huge probability that any code to be security
reviewed is not shipped with any formal specifications, unless this code is to be used in highly
critical environments.

Moreover, here are some vulnerabilities that can be detected by Frama-C:

¶ Buffer overflows,

¶ Double free,

¶ Null Dereference,

¶ Use-after-free,

¶ Integer Overflows,

¶ Uninitialized variables.

Frama-C appears so to be an interesting tool only for certain categories of code, where the
following properties are met:

- code is deeply mastered by the developer (no use of frameworks nor a lot of additional libraries)

- code has low interaction with its environment and users

- code does not rely on implicit system treatment of it

9 https://www.misra.org.uk/Publications/tabid/57/Default.aspx

VESSEDIA D1.7 Page 53 of 104

- code follows a specification to avoid potential flaws

Those codes can be found in embedded systems nowadays. Unfortunately, many of the new
embedded systems (IOT and the like) are coded by less-mature organizations, where those
categories of code are still not developed.

4.2 Integration of the modified Frama-C into the proposed
methodology

4.2.1 Using Frama-C on the automated review part

4.2.1.1 Modifying Frama-C to support more codes

Frama-C appears to not be as efficient for codes that require a lot of interaction with their
environment, because those interactions need modelling, and is not able to analyze the standard
functions calls without added specifications.

On the latter, an analysis of Frama-C internals reveals that Frama-C defines what is called stubs
for the standard Libc functions. Those stubs are actually E-ACSL annotations on top of every libc
functions, ensuring some formal properties. Within those stubs, it appears that there is most of
the time no annotations regarding potential security problems involved by the use of those
functions. For example, here is the stub of the fgets function (which will be modified later on):

/*@

 requires valid_stream: \ valid(stream);

 assigns s[0..size] \ from indirect:size, indirect:*stream;

 assigns \ result \ from s, indirect:size, indirect:*stream;

 ensures result_null_or_same: \ result == \ null || \ result == s;

 ensures terminated_string_on_success:

 \ result != \ null ==> valid_string(s);

 */

What this stub does is the following:

¶ By calling \valid(stream), it is verified that stream is allocated memory

¶ Assigns clauses are here to assign symbolic values to the destination buffer

¶ Ensures clauses add additional properties to the symbolic values. It is for example
added that the result is either the destination buffer assigned by the previous clauses or
the null pointer.

As one can denote, there is no condition to make sure that the destination buffer size is enough
to hold the stream. As such, a buffer overflow wonôt be detected there.

Those stubs can be partially adapted to security reviews. As a reminder, given that high
constraints are often given to the reviewer, the reviewer should be able to use Frama-C quickly
on the code to analyze, without having to study in-depth the code first. The idea is to ensure that
Frama-C detects at least potential dangerous functions calls that may indicate to the reviewer
where potential vulnerabilities in the source code reside.

To do so, E-ACSL functionalities have been studied a bit more in-depth. Basically, it is possible
to ensure formal properties on a fixed sized memory area, but otherwise, it is not directly possible
to model environment interaction in case the environment is not modeled first (e.g. itôs not possible
to write completely generic environment interactions) or to create on-the-fly annotations based on
analyzed code properties. From those observations, the stubs can be modified like as follow:

VESSEDIA D1.7 Page 54 of 104

- The first case is when the function may generate buffer overflows, and this function is using a
size parameter as an argument. It is here possible to define that the output memory should be
valid, and to make sure that there is no buffer overflow. To do so, it is possible to add the following
pre-condition:

requires <function_name>_security_potential_buffer_overflow: \ valid(dest + (0

.. size - 1));

So, in the case of the fgets function for example, the stub is changed from:

/*@

 requires valid_stream: \ valid(stream);

 assi gns s[0..size] \ from indirect:size, indirect:*stream;

 assigns \ result \ from s, indirect:size, indirect:*stream;

 ensures result_null_or_same: \ result == \ null || \ result == s;

 ensures terminated_string_on_success:

 \ result != \ null ==> valid_string(s);

 */

extern char *fgets(char * restrict s, int size,

 FILE * restrict stream);

To:

/*@

 requires fgets_security_potential_buffer_overflow: \ valid(s + (0 .. size -

1));

 requires valid_stream: \ valid(stream);

 assigns s[0..size] \ from indirect:size, indirect:*stream;

 assigns \ result \ from s, indirect:size, indirect:*stream;

 ensures result_null_or_same: \ result == \ null || \ result == s;

 ensures terminated_string_on_success:

 \ result != \ null ==> valid_st ring(s);

 */

extern char *fgets(char * restrict s, int size,

 FILE * restrict stream);

This case can be adapted to the following functions: strncpy, memcpy, bcopy, strncat.

- In the case the library function may generates buffer overflow, but there is no size parameter in
its argument, there is no way to simply create a stub verifying that the size of the destination is
superior or equal to the length of the input (especially when the input comes from user supplied
string). As such, instead of making formal assertions here, it is possible to use Frama-C to detect
the use of such a function (instead of using an additional tool). To do so, one could use a
requirement pre-condition that is always false. But this comes at the cost of the function to not be
analyzed by the core of Frama-c. In fact, the only proper way to do it is to modify Frama-c shipping
or to rewrite every dangerous C functions to include a wrong assert that will emit an alarm during
the analysis. The first approach does seem better, as it avoids to maintain a separate codebase
from Frama-c and standard Libc. One can find the corresponding modifications in the annex of
this document. Those modifications for example permit to emit a warning when the functions gets

and toto are called.

VESSEDIA D1.7 Page 55 of 104

- In the case the function may create potential integer overflows; it seems there is no way to
ensure such a thing using E-ACSL. The idea is to use the same modifications than before to emit
a warning when a dangerous function is called.

- In the case the function is sensible to format string vulnerabilities, there is also no possibility
using E-ACSL to detect them accurately. The same approach than before can be applied, in order
to detect them.

4.2.1.2 Generic methodology to make Frama-C analyses

The following paragraph presents a generic approach on how to use Frama-C to analyze a source
code in the automated review part of the methodology. This approach is to be followed in the case
one reviewer has to use Frama-C on a code. To produce this methodology, the following two
principles were followed: the automated review part should be able to detect most of the intrinsic
C vulnerabilities, and this review should not take too long to be done. Especially, it was sought to
reduce a lot the verbosity of Frama-C. This methodology assumes also that the reviewer knows
if the code can be analyzed with Frama-C. Indeed, C Windows code for example has almost no
chance to be analyzed with Frama-C, as windows libc is not supported. In the case the code is
not complete or use proprietary libraries not shipped with it, due to the soundness of Frama-C,
there is a huge probability that the analysis wonôt be relevant.

This methodology is composed of 6 steps:

1) Compiling project with GCC

2) Preprocessing files with Frama-C

3) Frama-C value analysis

4) Results triaging

5) Results analysis

6) Results refining

4.2.1.2.1 Compiling project with GCC

This step is optional but highly recommended. Indeed, the whole compilation chain might not be
provided with the code, and as such simply trying to compile the project will make the reviewer
loose too much time.

If possible, compiling the project with GCC, is a complementary approach to the use of Frama-C.
Indeed, GCC is by itself capable of detecting several vulnerabilities, like uninitialized variables or
types confusions. It is especially useful because it can detect some vulnerabilities not detected
by Frama-C, and conversely, like format string errors and several buffer overflows that may occur
while calling standard libc functions. It is also a first step to make sure that Frama-C will be able
to preprocess the source files.

This compilation needs to be made with several flags to raise more warnings that are interesting
in our case. This flag needs to be added to the compilation chain of the source code.

Those flags are the following:

¶ Wall: Enables almost all compilerôs warning messages.

¶ Wextra: Enables some extra warning messages that are not enabled by -Wall.

¶ Wnull-dereference: This warning is not set on by the two previous options, and can
permit to point out some null dereference vulnerabiltiies.

¶ Wformat=2: This option enables more precision while emitting warnings on format
strirngs.

¶ Wpedantic: Enables some checks like arithmetic overflows.

VESSEDIA D1.7 Page 56 of 104

¶ Wconversion: Enbales some additional checks on type conversions, as it is not
enabled by ïWall and ïWextra.

Once the compilation is ended, every warning should be investigated to check if there is any
potential security vulnerability declared with it.

From a practical point of view, compilation chains are often provided with a Makefile . A Typical

workflow is to open that Makefile , and search for the CPPFLAS or CFLAGS variable. This

variable is modified by adding ñ-Wall ïWextraò. Then the compilation can be launched by a make

all | tee output.txt command. By adding tee command, the output is redirected also into

a file, facilitating the process of the warnings emitted.

4.2.1.2.2 Preprocessing files with Frama-C

The next step of the analysis is to preprocess files with Frama-C, that is simply parse them and
make sure Frama-C is capable of handling every construct. To do so, the following command
should be entered:

frama - c ðc11 ðmachdep <the targeted platform for our code> `find . ðname *.c`

The - c11 option is added to the command line to allow the use of some C11 constructs that are

otherwise prohibited. The idea is to tend to a more global analysis and avoid possible errors that
can be simply omitted. Here are two examples of prohibited syntax that are authorized when using
the ïc11 option:

static const int NUM = 6;

void function (void) {

 char test [NUM];

 char test1 [6] = { 0};

}

In this example, the first array declaration is not correct because of the constant integer passed
as initialization size. In the second one, the syntax is prohibited because of the initializer ñ{0}ò.

The option machdep is used to avoid errors based on the size and alignment of elementary data

types.

4.2.1.2.3 Frama-C in-depth analysis

To run the real analysis of Frama-C, the following command line should be used:

frama - c ðc11 ðmachdep <arch> - val - no- results - remove - redundant - alarms -

value - log w:<output_file> - val - reduce - on- logic - alarms `find . ðname *.c` -

save savefile

Once this command is finished, the output file should be gathered for the following steps of the
use of Frama-C. Indeed, this command basically asks Frama-C to simply output warnings in the
output_file , and to reduce redundant alarms the most. The ïno-results option is used as it is

not relevant in our case to keep a trace of the values across the program symbolic execution.

4.2.1.2.4 Triaging results

The next step is to triage a bit the results of the analysis, and especially to remove useless alarms,
from a security view point, that may be present within the output file. To do so, the following script
might be used on the output file:

cat $1| grep - v 'RHS' > temp1

cat temp1| grep - v 'LHS' > temp2

VESSEDIA D1.7 Page 57 of 104

cat temp2| grep - v 'unknown' > temp3

cat temp3| grep - v 'invalid' > temp4

cat temp4| grep - v ' \ [value \] warning' > temp5

cat temp5| grep - v 'pointer comparison' > temp6

This script does the following:

¶ removes possibly warning left in the output_file, that are not alarms. Indeed, it appears
that only alarms are relevant to security analysis.

¶ Removes some messages stating on a non-compliance from MISRA development guide.
These messages are for example indicating that it is not possible to use non binary fields
on binary operators (the remove of lines using RHS and LHS keywords).

¶ Removes messages stating Frama-C was not able to correctly check some E-ACSL
properties. This is the removal based on unknown and invalid keywords.

¶ Removes messages stating on an error about a pointer comparison. In fact, the
comparison might be false from a logical point of view, but it should not create any bug.
Those messages could however be used in the manual analysis.

4.2.1.2.5 Analyzing results

The first step for analyzing results is to access the ñred alarms ò of Frama-c, e.g. those

considered as critical or that are analysis errors. To do so, graphical interface should be used
with the results of the analysis. To do so, the following command should be used:

frama - c- gui ðload savefile

where savefile is the filename used as a parameter for the save argument of the analysis.

Once in the GUI, the ñred alarms ò tab should then be accessed, and the alarms emitted here

analyzed. Here, a ñmem_accessò alarm indicates a wrong memory access or allocation, inducing

potentially either an overflow or a potential leak of information. An ñInitialization ò alarm

indicates a potential use of an uninitialized variable.

Figure 35: accessing red alarms tab within the GUI of Frama-c

Then, every line of the output file (the one containing all the warnings) should be analyzed. Here
is how it can be done:

